248
Views
68
CrossRef citations to date
0
Altmetric
Original Article

Antimicrobial proteins in the response to graphene oxide in Caenorhabditis elegans

, , &
Pages 578-590 | Received 16 Mar 2017, Accepted 08 May 2017, Published online: 19 May 2017

References

  • Alper S, McBride SJ, Lackford B, Freedman JH, Schwartz DA. 2007. Specificity and complexity of the Caenorhabditis elegans innate immune response. Mol Cell Biol 27:5544–53.
  • Alper S, Laws R, Lackford B, Boyd WA, Dunlap P, Freedman JH, et al. 2008. Identification of innate immunity genes and pathways using a comparative genomics approach. Proc Natl Acad Sci USA 105:7016–21.
  • Antoshechkin I, Sternberg PW. 2007. The versatile worm: genetic and genomic resources for Caenorhabditis elegans research. Nat Rev Genet 8:518–32.
  • Bitounis D, Ali-Boucetta H, Hong BH, Min D, Kostarelos K. 2013. Prospects and challenges of graphene in biomedical applications. Adv Mater Weinheim 25:2258–68.
  • Brenner S. 1974. The genetics of Caenorhabditis elegans. Genetics 77:71–94.
  • Chang Y, Yang S, Liu J, Dong E, Wang Y, Cao A, et al. 2011. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett 200:201–10.
  • Chatterjee N, Kim Y, Yang J, Roca CP, Joo SW, Choi J. 2017. A systems toxicology approach reveals the Wnt-MAPK crosstalk pathway mediated reproductive failure in Caenorhabditis elegans exposed to graphene oxide (GO) but not to reduced graphene oxide (rGO). Nanotoxicology 11:76–86.
  • Espelt MV, Estevez AY, Yin X, Strange K. 2005. Oscillatory Ca2+ signaling in the isolated Caenorhabditis elegans intestine: role of the inositol-1,4,5-trisphosphate receptor and phospholipases C beta and gamma. J Gen Physiol 126:379–92.
  • Evans EA, Kawli T, Tan MW. 2008. Pseudomonas aeruginosa suppresses host immunity by activating the DAF-2 insulin-like signaling pathway in Caenorhabditis elegans. PLoS Pathog 4:e1000175.
  • Feng J, Bussiere F, Hekimi S. 2001. Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell 1:633–44.
  • Geim AK, Novoselov KS. 2007. The rise of graphene. Nat Mater 6:183–91.
  • Gumienny TL, Savage-Dunn C. 2013. TGF-b Signaling in C. elegans. WormBook. doi: 10.1895/wormbook.1.22.2.
  • Hanna SK, Cooksey GA, Dong S, Nelson BC, Mao L, Elliott JT, Petersen EJ. 2016. Feasibility of using a standardized Caenorhabditis elegans toxicity test to assess nanomaterial toxicity. Environ Sci Nano 3:1080–9.
  • Hoeckendorf A, Stanisak M, Leippe M. 2012. The saposin-like protein SPP-12 is an antimicrobial polypeptide in the pharyngeal neurons of Caenorhabditis elegans and participates in defence against a natural bacterial pathogen. Biochem J 445:205–12.
  • Jensen VL, Simonsen KT, Lee Y-H, Park D, Riddle DL. 2010. RNAi screen of DAF-16/FOXO target genes in C. elegans links pathogenesis and dauer formation. PLoS One 5:e15902.
  • Kayser EB, Morgan PG, Hoppel CL, Sedensky MM. 2001. Mitochondrial expression and function of GAS-1 in Caenorhabditis elegans. J Biol Chem 276:20551–8.
  • Kenyon C. 2010. The genetics of ageing. Nature 464:504–12.
  • Kovtyukhova NI, Olivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, et al. 1999. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11:771–8.
  • Lapierre LR, Hansen M. 2012. Lessons from C. elegans: signaling pathways for longevity. Trends Endocrinol Metab 23:637–44.
  • Leung MC, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, et al. 2008. Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 106:5–28.
  • Li B, Yang J, Huang Q, Zhang Y, Peng C, Zhang Y, et al. 2013. Biodistribution and pulmonary toxicity of intratracheally instilled graphene oxide in mice. NPG Asia Mater 5:e44.
  • Li Y-P, Wu Q-L, Zhao Y-L, Bai Y-F, Chen P-S, Xia T, et al. 2014. Response of microRNAs to in vitro treatment with graphene oxide. ACS Nano 8:2100–10.
  • Liang S, Xu S, Zhang D, He J, Chu M. 2015. Reproductive toxicity of nanosclae graphene oxide in male mice. Biomaterials 9:92–105.
  • Liao K, Lin Y, Macosko CW, Haynes CL. 2011. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Interfaces 3:2607–15.
  • Liu J, Haftting J, Critchley AT, Bandkota AH, Prithiviraj B. 2013. Components of the cultivated red seaweed Chondrus crispus enhance the immune response of Caenorhabditis elegans to Pseudomonas aeruginosa through the pmk-1, daf-2/daf-16, and skn-1 pathways. Appl Environ Microbiol 79:7343–50.
  • Liu Y, Wang X, Wang J, Nie Y, Du H, Dai H, et al. 2016. Graphene oxide attenuates the cytotoxicity and mutagenicity of PCB 52 via activation of genuine autophagy. Environ Sci Technol 50:3154–64.
  • Mallo GV, Kurz CL, Couillault C, Pujol N, Granjeaud S, Kohara Y, et al. 2002. Inducible antibacterial defense system in C. elegans. Curr Biol 12:1209–14.
  • McElwee J, Bubb K, Thomas JH. 2003. Transcriptional outputs of the Caenorhabditis elegans forkhead protein DAF-16. Aging Cell 2:111–21.
  • Mello C, Fire A. 1995. DNA transformation. Methods Cell Biol 48:451–82.
  • Meisel JD, Panda O, Mahanti P, Schroeder FC, Kim DH. 2014. Chemosensation of bacterial secondary metabolites modulates neuroendocrine signaling and behavior of C. elegans. Cell 159:267–80.
  • Miyadera H, Amino H, Hiraishi A, Taka H, Murayama K, Miyoshi H, et al. 2001. Altered quinone biosynthesis in the long-lived clk-1 mutants of Caenorhabditis elegans. J Biol Chem 276:7713–16.
  • Murphy CT, McGarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, et al. 2003. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424:277–84.
  • Pinkston-Gosse J, Kenyon C. 2007. DAF-16/FOXO targets genes that regulate tumor growth in Caenorhabditis elegans. Nat Genet 39:1403–9.
  • Qu G, Zhang S, Wang L, Wang X, Sun B, Yin N, et al. 2013. Graphene oxide induces toll-like receptor 4 (TLR4)-dependent necrosis in macrophages. ACS Nano 7:5732–45.
  • Qu M, Li Y-H, Wu Q-L, Xia Y-K, Wang D-Y. 2017. Neuronal ERK signaling in response to graphene oxide in nematode Caenorhabditis elegans. Nanotoxicology. doi: 10.1080/17435390.2017.1315190.
  • Qu Y, Li W, Zhou Y, Liu X, Zhang L, Wang L, et al. 2011. Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism. Nano Lett 11:3174–83.
  • Roh J, Sim SJ, Yi J, Park K, Chung KH, Ryu D, et al. 2009. Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43:3933–40.
  • Ruan Q-L, Ju J-J, Li Y-H, Li X-B, Liu R, Liang G-Y, et al. 2012. Chlorpyrifos exposure reduces reproductive capacity owing to a damaging effect on gametogenesis in the nematode Caenorhabditis elegans. J Appl Toxicol 32:527–35.
  • Rui Q, Lu Q, Wang D-Y. 2009. Administration of Bushenkangshuai Tang alleviates the UV irradiation- and oxidative stress-induced lifespan defects in nematode Caenorhabditis elegans. Front Med China 3:76–90.
  • Shivers RP, Youngman MJ, Kim DH. 2008. Transcriptional responses to pathogens in Caenorhabditis elegans. Curr Opin Microbiol 11:251–6.
  • Shu C-J, Yu X-M, Wu Q-L, Zhuang Z-H, Zhang W-M, Wang D-Y. 2015. Pretreatment with paeonol prevents the adverse effects and alters the translocation of multi-walled carbon nanotubes in nematode Caenorhabditis elegans. RSC Adv 5:8942–51.
  • Sun L-M, Lin Z-Q, Liao K, Xi Z-G, Wang D-Y. 2015. Adverse effects of coal combustion related fine particulate matter (PM2.5) on nematode Caenorhabditis elegans. Sci Total Environ 512–513:251–60.
  • Sun L-M, Wu Q-L, Liao K, Yu P-H, Cui Q-H, Rui Q, et al. 2016. Contribution of heavy metals to toxicity of coal combustion related fine particulate matter (PM2.5) in Caenorhabditis elegans with wild-type or susceptible genetic background. Chemosphere 144:2392–400.
  • Tepper RG, Ashraf J, Kaletsky R, Kleemann G, Murphy CT, Bussemaker HJ. 2013. PQM-1 complements DAF-16 as a key transcriptional regulator of DAF-2-mediated development and longevity. Cell 154:676–90.
  • Tewari M, Hu PJ, Ahn JS, Ayivi-Guedehoussou N, Vidalain PO, Li S, et al. 2004. Systematic interactome mapping and genetic perturbation analysis of a C. elegans TGF-beta signaling network. Mol Cell 13:469–82.
  • Wang D-Y. 2016. Biological effects, translocation, and metabolism of quantum dots in nematode Caenorhabditis elegans. Toxicol Res 5:1003–11.
  • Wang D-Y, Yu Y-L, Li Y-X, Wang Y, Wang D-Y. 2014. Dopamine receptors antagonistically regulate behavioral choice between conflicting alternatives in C. elegans. PLoS ONE 9:e115985.
  • Watts JL. 2008. Fat synthesis and adiposity regulation in Caenorhabditis elegans. Trends Endocrinol Metab 20:58–65.
  • Wu Q-L, Yin L, Li X, Tang M, Zhang T, Wang D-Y. 2013. Contributions of altered permeability of intestinal barrier and defecation behavior to toxicity formation from graphene oxide in nematode Caenorhabditis elegans. Nanoscale 5:9934–43.
  • Wu Q-L, Cao X-O, Yan D, Wang D-Y, Aballay A. 2015. Genetic screen reveals link between maternal-effect sterile gene mes-1 and P. aeruginosa-induced neurodegeneration in C. elegans. J Biol Chem 90:29231–9.
  • Wu Q-L, Zhou X-F, Han X-X, Zhuo Y-Z, Zhu S-T, Zhao Y-L, et al. 2016. Genome-wide identification and functional analysis of long noncoding RNAs involved in the response to graphene oxide. Biomaterials 102:277–91.
  • Yang J-N, Zhao Y-L, Wang Y-W, Wang H-F, Wang D-Y. 2015a. Toxicity evaluation and translocation of carboxyl functionalized graphene in Caenorhabditis elegans. Toxicol Res 4:1498–510.
  • Yang K, Li Y, Tan X, Peng R, Liu Z. 2013. Behavior and toxicity of graphene and its functionalized derivatives in biological systems. Small 9:1492–503.
  • Yang K, Zhang S, Zhang G, Sun X, Lee S, Liu Z. 2010. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10:3318–23.
  • Yang R-L, Rui Q, Kong L, Zhang N, Li Y, Wang X-Y, et al. 2016a. Metallothioneins act downstream of insulin signaling to regulate toxicity of outdoor fine particulate matter (PM2.5) during Spring Festival in Beijing in nematode Caenorhabditis elegans. Toxicol Res 5:1097–105.
  • Yang R-L, Zhao Y-L, Yu X-M, Lin Z-Q, Xi Z-G, Rui Q, et al. 2015b. Insulin signaling regulates toxicity of traffic-related PM2.5 on intestinal development and function in nematode Caenorhabditis elegans. Toxicol Res 4:333–43.
  • Yang R-L, Ren M-X, Rui Q, Wang D-Y. 2016b. A mir-231-regulated protection mechanism against the toxicity of graphene oxide in nematode Caenorhabditis elegans. Sci Rep 6:32214.
  • Zhang H, He X, Zhang Z, Zhang P, Li Y, Ma Y, et al. 2011. Nano-CeO2 exhibits adverse effects at environmental relevant concentrations. Environ Sci Technol 45:3725–30.
  • Zhang W, Wang C, Li Z, Lu Z, Li Y, Yin J, et al. 2012. Unraveling stress-induced toxicity properties of graphene oxide and the underlying mechanism. Adv Mater Weinheim 24:5391–7.
  • Zhao Y-L, Wu Q-L, Li Y-P, Wang D-Y. 2013. Translocation, transfer, and in vivo safety evaluation of engineered nanomaterials in the non-mammalian alternative toxicity assay model of nematode Caenorhabditis elegans. RSC Adv 3:5741–57.
  • Zhao Y-L, Wang X, Wu Q-L, Li Y-P, Tang M, Wang D-Y. 2015a. Quantum dots exposure alters both development and function of D-type GABAergic motor neurons in nematode Caenorhabditis elegans. Toxicol Res 4:399–408.
  • Zhao Y-L, Wu Q-L, Wang D-Y. 2015b. A microRNAs-mRNAs network involved in the control of graphene oxide toxicity in Caenorhabditis elegans. RSC Adv 5:92394–405.
  • Zhao Y-L, Yu X-M, Jia R-H, Yang R-L, Rui Q, Wang D-Y. 2015c. Lactic acid bacteria protects Caenorhabditis elegans from toxicity of graphene oxide by maintaining normal intestinal permeability under different genetic backgrounds. Sci Rep 5:17233.
  • Zhao Y-L, Yang R-L, Rui Q, Wang D-Y. 2016a. Intestinal insulin signaling encodes two different molecular mechanisms for the shortened longevity induced by graphene oxide in Caenorhabditis elegans. Sci Rep 6:24024.
  • Zhao Y-L, Wu Q-L, Wang D-Y. 2016b. An epigenetic signal encoded protection mechanism is activated by graphene oxide to inhibit its induced reproductive toxicity in Caenorhabditis elegans. Biomaterials 79:15–24.
  • Zhao Y-L, Zhi L-T, Wu Q-L, Yu Y-L, Sun Q-Q, Wang D-Y. 2016c. p38 MAPK-SKN-1/Nrf signaling cascade is required for intestinal barrier against graphene oxide toxicity in Caenorhabditis elegans. Nanotoxicology 10:1469–79.
  • Zhao Y-L, Yang J-N, Wang D-Y. 2016d. A microRNA-mediated insulin signaling pathway regulates the toxicity of multi-walled carbon nanotubes in nematode Caenorhabditis elegans. Sci Rep 6:23234.
  • Zhao Y-L, Jia R-H, Qiao Y, Wang D-Y. 2016e. Glycyrrhizic acid, active component from Glycyrrhizae radix, prevents toxicity of graphene oxide by influencing functions of microRNAs in nematode Caenorhabditis elegans. Nanomedicine Nanotechnol Biol Med 12:735–44.
  • Zhi L-T, Fu W, Wang X, Wang D-Y. 2016a. ACS-22, a protein homologous to mammalian fatty acid transport protein 4, is essential for the control of toxicity and translocation of multi-walled carbon nanotubes in Caenorhabditis elegans. RSC Adv 6:4151–9.
  • Zhi L-T, Ren M-X, Qu M, Zhang H-Y, Wang D-Y. 2016b. Wnt ligands differentially regulate toxicity and translocation of graphene oxide through different mechanisms in Caenorhabditis elegans. Sci Rep 6:39261.
  • Zhi L-T, Qu M, Ren M-X, Zhao L, Li Y-H, Wang D-Y. 2017. Graphene oxide induces canonical Wnt/β-catenin signaling-dependent toxicity in Caenorhabditis elegans. Carbon 113:122–31.
  • Zhuang Z-H, Li M, Liu H, Luo L-B, Gu W-D, Wu Q-L, et al. 2016. Function of RSKS-1-AAK-2-DAF-16 signaling cascade in enhancing toxicity of multi-walled carbon nanotubes can be suppressed by mir-259 activation in Caenorhabditis elegans. Sci Rep 6:32409.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.