284
Views
8
CrossRef citations to date
0
Altmetric
Original Article

CeO2 nanoparticles alter the outcome of species interactions

ORCID Icon, , , , , & show all
Pages 625-636 | Received 20 Nov 2016, Accepted 01 Jun 2017, Published online: 23 Jun 2017

References

  • Aruoja V, Pokhrel S, Sihtmae M, Mortimer M, Madler L, Kahru A. 2015. Toxicity of 12 metal-based nanoparticles to algae, bacteria and protozoa. Environ Sci Nano 2:630–44.
  • Auffan M, Rose J, Bottero J-Y, Lowry GV, Jolivet J-P, Wiesner MR. 2009. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–41.
  • Baalousha M, Lead JR, Von Der Kammer F, Hofmann T. 2009. Natural colloids and nanoparticles in aquatic and terrestrial environments. Environmental and Human Health Impacts of Nanotechnology. Chichester, NY: John Wiley & Sons, Ltd, 109–161.
  • Barton LE, Auffan M, Bertrand M, Barakat M, Santaella C, Masion A, et al. 2014. Transformation of pristine and citrate-functionalized CeO2 nanoparticles in a laboratory-scale activated sludge reactor. Environ Sci Technol 48:7289–96.
  • Bertness MD, Callaway R. 1994. Positive interactions in communities. Trends Ecol Evol (Amst) 9:191–3.
  • Bour A, Mouchet F, Cadarsi S, Silvestre J, Verneuil L, Baque D, et al. 2016. Toxicity of CeO2 nanoparticles on a freshwater experimental trophic chain: a study in environmentally relevant conditions through the use of mesocosms. Nanotoxicology 10:245–55.
  • Chesson P, Huntly N. 1997. The roles of harsh and fluctuating conditions in the dynamics of ecological communities. Am Nat 150:519–53.
  • Coleman T, Branch M, Grace A. 2014. Optimization toolbox. For use with MATLAB-user’s guide-version 7.0. The Mathworks, Inc., Natick, MA.
  • Dahle JT, Arai Y. 2015. Environmental geochemistry of cerium: applications and toxicology of cerium oxide nanoparticles. Int J Environ Res Public Health 12:1253–78.
  • Djurisic AB, Leung YH, Ng AMC, Xu XY, Lee PKH, Degger N, Wu RSS. 2015. Toxicity of metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts. Small 11:26–44.
  • Durante CA, Neto EBS, Azevedo A, Crespo EA, Lailson-Brito J. 2016. POPs in the South Latin America: bioaccumulation of DDT, PCB, HCB, HCH and Mirex in blubber of common dolphin (Delphinus delphis) and Fraser’s dolphin (Lagenodelphis hosei) from Argentina. Sci Total Environ 572:352–60.
  • Frankel J. 1999. Cell biology of Tetrahymena thermophila. Methods Cell Biol . 62:27–125.
  • Gambardella C, Gallus L, Gatti AM, Faimali M, Carbone S, Antisari LV, et al. 2014. Toxicity and transfer of metal oxide nanoparticles from microalgae to sea urchin larvae. Chem Ecol 30:308–16.
  • Gause G. 1934. The Struggle for Existence New York, USA: Williams and Wilkins.
  • Ghafari P, St-Denis CH, Power ME, Jin X, Tsou V, Mandal HS, et al. 2008. Impact of carbon nanotubes on the ingestion and digestion of bacteria by ciliated protozoa. Nat Nanotechnol 3:347–51.
  • Gupta GS, Kumar A, Shanker R, Dhawan A. 2016. Assessment of agglomeration, co-sedimentation and trophic transfer of titanium dioxide nanoparticles in a laboratory-scale predator-prey model system. Sci Rep 6:31422.
  • He Q, Bertness MD. 2014. Extreme stresses, niches, and positive species interactions along stress gradients. Ecology 95:1437–43.
  • Holt RD, Pickering J. 1985. Infectious-disease and species coexistence - a model of Lotka-Volterra form. Am Nat 126:196–211.
  • Jiang L, Morin PJ. 2004. Temperature-dependent interactions explain unexpected responses to environmental warming in communities of competitors. J Anim Ecol 73:569–76.
  • Jiang L, Patel SN. 2008. Community assembly in the presence of disturbance: a microcosm experiment. Ecology 89:1931–40.
  • Kadar E, Cunliffe M, Fisher A, Stolpe B, Lead J, Shi ZB. 2014. Chemical interaction of atmospheric mineral dust-derived nanoparticles with natural seawater - EPS and sunlight-mediated changes. Sci Total Environ 468:265–71.
  • Kato Y, Konishi M, Shigyo M, Yoneyama T, Yanagisawa S. 2010. Characterization of plant eukaryotic translation initiation factor 6 (eIF6) genes: the essential role in embryogenesis and their differential expression in Arabidopsis and rice. Biochem Bioph Res Co 397:673–8.
  • Khan FR, Paul KB, Dybowska AD, Valsami-Jones E, Lead JR, Stone V, Fernandes TF. 2015. Accumulation dynamics and acute toxicity of silver nanoparticles to Daphnia magna and Lumbriculus variegatus: implications for metal modeling approaches. Environ Sci Technol 49:4389–97.
  • Kwok KWH, Dong W, Marinakos SM, Liu J, Chilkoti A, Wiesner MR, et al. 2016. Silver nanoparticle toxicity is related to coating materials and disruption of sodium concentration regulation. Nanotoxicology 10:1306–17.
  • Lead JR, Smith E. 2009. Environmental and Human Health Impacts of Nanotechnology. Chichester: Wiley.
  • Li K, Chen Y, Zhang W, Pu Z, Jiang L, Chen Y. 2012. Surface interactions affect the toxicity of engineered metal oxide nanoparticles toward Paramecium. Chem Res Toxicol 25:1675–81.
  • Morin PJ. 2009. Community Ecology. Chichester: John Wiley & Sons.
  • Morris SA, Pratt D. 2003. Analysis of the Lotka–Volterra competition equations as a technological substitution model. Technological Forecasting and Social Change 70:103–33.
  • Mortimer M, Gogos A, Bartolome N, Kahru A, Bucheli TD, Slaveykova VI. 2014a. Potential of hyperspectral imaging microscopy for semi-quantitative analysis of nanoparticle uptake by protozoa. Environ Sci Technol 48:8760–7.
  • Mortimer M, Kahru A, Slaveykova VI. 2014b. Uptake, localization and clearance of quantum dots in ciliated protozoa Tetrahymena thermophila. Environ Pollut 190:58–64.
  • Mortimer M, Kasemets K, Kahru A. 2010. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology 269:182–9.
  • Mortimer M, Kasemets K, Vodovnik M, Marinsek-Logar R, Kahru A. 2011. Exposure to CuO nanoparticles changes the fatty acid composition of protozoa Tetrahymena thermophila. Environ Sci Technol 45:6617–24.
  • Nowack B, Ranville JF, Diamond S, Gallego-Urrea JA, Metcalfe C, Rose J, et al. 2012. Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31:50–9.
  • Park EJ, Choi J, Park YK, Park K. 2008. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 245:90–100.
  • Peng C, Zhang H, Fang H, Xu C, Huang H, Wang Y, et al. 2015. Natural organic matter-induced alleviation of the phytotoxicity to rice (Oryza sativa L.) caused by copper oxide nanoparticles. Environ Toxicol Chem 34:1996–2003.
  • Peng C, Xu C, Liu Q, Sun L, Luo Y, Shi J. 2017. Fate and transformation of CuO nanoparticles in the soil–rice system during the life cycle of rice plants. Environ Sci Technol 51:4907–817.
  • Piccinno F, Gottschalk F, Seeger S, Nowack B. 2012. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14:1109.
  • Van Hoecke K, Quik JT, Mankiewicz-Boczek J, De Schamphelaere KA, Elsaesser A, Van Der Meeren P, et al. 2009. Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests. Environ Sci Technol 43:4537–46.
  • Vandermeer JH. 1969. The competitive structure of communities: an experimental approach with protozoa. Ecology 50:362–71.
  • Violle C, Pu Z, Jiang L. 2010. Experimental demonstration of the importance of competition under disturbance. Proc Natl Acad Sci USA 107:12925–9.
  • Werlin R, Priester JH, Mielke RE, Kramer S, Jackson S, Stoimenov PK, et al. 2011. Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain. Nature Nanotech 6:65–71.
  • Wootton JT. 1994. The nature and consequences of indirect effects in ecological communities. Ann Rev Ecol Systematics 25:443–66.
  • Yang W-W, Wang Y, Huang B, Wang N-X, Wei Z-B, Luo J, et al. 2014. TiO2 Nanoparticles act as a carrier of Cd bioaccumulation in the ciliate Tetrahymena thermophila. Environ Sci Technol 48:7568–75.
  • Zhang W, Hughes J, Chen Y. 2012. Impacts of hematite nanoparticle exposure on biomechanical, adhesive, and surface electrical properties of Escherichia coli cells. Appl Environ Microb 78:3905–15.
  • Zhang W, Pu Z, Du S, Chen Y, Jiang L. 2016. Fate of engineered cerium oxide nanoparticles in an aquatic environment and their toxicity toward 14 ciliated protist species. Environ Pollut 212:584–91.
  • Zhang W, Rittmann B, Chen Y. 2011. Size effects on adsorption of hematite nanoparticles on E. coli cells. Environ Sci Technol 45:2172–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.