545
Views
95
CrossRef citations to date
0
Altmetric
Original Article

Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice

, , , , , & show all
Pages 699-709 | Received 05 Nov 2016, Accepted 16 Jun 2017, Published online: 07 Jul 2017

References

  • Beattie IR, Haverkamp RG. 2011. Silver and gold nanoparticles in plants: sites for the reduction to metal. Metallomics 3:628–32.
  • Butler RD, Simon EW. 1971. Ultrastructural aspects of senescence in plants. Adv Gerontol Res 3:73–129.
  • Chen J, Dou R, Yang Z, Wang X, Mao C, Gao X, et al. 2016. The effect and fate of water-soluble carbon nanodots in maize (Zea mays L.). Nanotoxicology 10:818–28.
  • Dan Y, Ma X, Zhang W, Liu K, Stephan C, Shi H. 2016. Single particle ICP-MS method development for the determination of plant uptake and accumulation of CeO2 nanoparticles. Anal Bioanal Chem 408:5157–67.
  • Dan Y, Zhang W, Xue R, Ma X, Stephan C, Shi H. 2015. Characterization of gold nanoparticle uptake by tomato plants using enzymatic extraction followed by single-particle inductively coupled plasma–mass spectrometry analysis. Environ Sci Technol 49:3007–14.
  • Donovan AR, Adams CD, Ma Y, Stephan C, Eichholz T, Shi H. 2016. Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment. Chemosphere 144:148–53.
  • Eichert T, Kurtz A, Steiner U, Goldbach HE. 2008. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plantarum 134:151–60.
  • Gardea-Torresdey JL, Rico CM, White JC. 2014. Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ Sci Technol 48:2526–40.
  • Geisler-Lee J, Wang Q, Yao Y, Zhang W, Geisler M, Li K, et al. 2012. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 7:323–37.
  • Gottschalk F, Sonderer T, Scholz RW, Nowack B. 2009. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43:9216–22.
  • Gray EP, Coleman JG, Bednar AJ, Kennedy AJ, Ranville JF, Higgins CP. 2013. Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry. Environ Sci Technol 47:14315–23.
  • Hanzlı´K J, Jehlička J, Šebek O, Weishauptová Z, Machovič VR. 2004. Multi-component adsorption of Ag(I), Cd(II) and Cu(II) by natural carbonaceous materials. Water Res 38:2178–84.
  • Haverkamp RG, Marshall AT. 2009. The mechanism of metal nanoparticle formation in plants: limits on accumulation. J Nanopart Res 11:1453–63.
  • Holden PA, Gardea-Torresdey JL, Klaessig F, Turco RF, Mortimer M, Hund-Rinke K, et al. 2016. Considerations of environmentally relevant test conditions for improved evaluation of ecological hazards of engineered nanomaterials. Environ Sci Technol 50:6124–45.
  • Hong J, Peralta-Videa JR, Rico C, Sahi S, Viveros MN, Bartonjo J, et al. 2014. Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ Sci Technol 48:4376–85.
  • Khodakovskaya MV, Kim B-S, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, et al. 2013. Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9:115–23.
  • Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS. 2012. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40:53–8.
  • Lamsal K, Kim S-W, Jung JH, Kim YS, Kim KS, Lee YS. 2011. Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39:26–32.
  • Larue C, Castillo-Michel H, Sobanska S, Cécillon L, Bureau S, Barthès V, et al. 2014. Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 264:98–106.
  • Lee S, Bi X, Reed RB, Ranville JF, Herckes P, Westerhoff P. 2014. Nanoparticle size detection limits by single particle ICP-MS for 40 elements. Environ Sci Technol 48:10291–300.
  • Levard C, Hotze EM, Lowry GV, Brown GE. 2012. Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46:6900–14.
  • Li CC, Wang YJ, Dang F, Zhou DM. 2016. Mechanistic understanding of reduced AgNP phytotoxicity induced by extracellular polymeric substances. J Hazard Mater 308:21–8.
  • Lombi E, Donner E, Taheri S, Tavakkoli E, Jämting K, Mcclure S, et al. 2013. Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge. Environ Pollut 176:193–7.
  • Moldenhauer K, Slaton N. 2001. Rice growth and development. In: Slaton NA, ed. Rice Production Handbook. Little Rock: University of Arkansas, Division of Agriculture, Cooperative Extension Service, 7–14.
  • Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A. 2013. Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54.
  • Mitrano DM, Ranville JF, Bednar A, Kazor K, Hering AS, Higgins CP. 2014. Tracking dissolution of silver nanoparticles at environmentally relevant concentrations in laboratory, natural, and processed waters using single particle ICP-MS (spICP-MS). Environ Sci: Nano 1:248–59.
  • Mueller NC, Nowack B. 2008. Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–53.
  • Navarro E, Wagner B, Odzak N, Sigg L, Behra R. 2015. Effects of differently coated silver nanoparticles on the photosynthesis of Chlamydomonas reinhardtii. Environ Sci Technol 49:8041–7.
  • Navratilova J, Praetorius A, Gondikas A, Fabienke W, Von Der Kammer F, Hofmann T. 2015. Detection of engineered copper nanoparticles in soil using single particle ICP-MS. Int J Environ Res Public Health 12:15756–68.
  • Pace HE, Rogers NJ, Jarolimek C, Coleman VA, Higgins CP, Ranville JF. 2011. Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal Chem 83:9361–9.
  • Pedersen P. 2004. Soybean Growth and Development. Ames, IA: Iowa State University, University Extension.
  • Peters RJB, Rivera ZH, Van Bemmel G, Marvin HJP, Weigel S, Bouwmeester H. 2014. Development and validation of single particle ICP-MS for sizing and quantitative determination of nano-silver in chicken meat. Anal Bioanal Chem 406:3875–85.
  • Piccapietra F, Allue´ CG, Sigg L, Behra R. 2012. Intracellular silver accumulation in Chlamydomonas reinhardtii upon exposure to carbonate coated silver nanoparticles and silver nitrate. Environ Sci Technol 46:7390–7.
  • Proulx K, Hadioui M, Wilkinson KJ. 2016. Separation, detection and characterization of nanomaterials in municipal wastewaters using hydrodynamic chromatography coupled to ICPMS and single particle ICPMS. Anal Bioanal Chem 408:5147–55.
  • Sarret G, Pilon-Smits E, Castillo-Michel H, Isaure M, Zhao FJ, Tappero R. 2013. Use of Synchrotron-Based Techniques to Elucidate Metal Uptake and Metabolism in Plants London: Academic Press.
  • Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR. 2016. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants – critical review. Nanotoxicology 10:257–78.
  • Seifsahandi M, Sorooshzadeh A. 2013. Comparison between the influences of silver nanoparticles and silver nitrate on the growth and phytochemical properties of Borage (Borago officinalis L.). Curr Nanosci 9:241–7.
  • Servin AD, Castillo-Michel H, Hernandez-Viezcas JA, Diaz BC, Peralta-Videa JR, Gardea-Torresdey JL. 2012. Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environ Sci Technol 46:7637–43.
  • Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, et al. 2013. Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotox Environ Saf 93:60–7.
  • Stegemeier JP, Schwab F, Colman BP, Webb SM, Newville M, Lanzirotti A, et al. 2015. Speciation matters: bioavailability of silver and silver sulfide nanoparticles to alfalfa (Medicago sativa). Environ Sci Technol 49:8451–60.
  • Tiede K, Hassellöv M, Breitbarth E, Chaudhry Q, Boxall ABA. 2009. Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. J Chromatogr A 1216:503–9.
  • Tuoriniemi J, Cornelis G, Hassellöv M. 2012. Size discrimination and detection capabilities of single-particle ICPMS for environmental analysis of silver nanoparticles. Anal Chem 84:3965–72.
  • Wang P, Lombi E, Zhao F-J, Kopittke PM. 2016. Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21:699–712.
  • Wang P, Menzies NW, Lombi E, Sekine R, Blamey FPC, Hernandez-Soriano MC, et al. 2015. Silver sulfide nanoparticles (Ag2S-NPs) are taken up by plants and are phytotoxic. Nanotoxicology 9:1041–9.
  • Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, et al. 2012. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–41.
  • Yin L, Cheng Y, Espinasse B, Colman BP, Auffan M, Wiesner M, et al. 2011. More than the Ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.