760
Views
15
CrossRef citations to date
0
Altmetric
Original Article

Titanium dioxide nanoparticles prime a specific activation state of macrophages

, , , , , , , , , , , , , & show all
Pages 737-750 | Received 21 Jul 2016, Accepted 26 Jun 2017, Published online: 15 Jul 2017

References

  • Ackroyd R, Kelty C, Brown N, Reed M. 2001. The history of photodetection and photodynamic therapy. Photochem Photobiol 74:656–69.
  • Arredouani MS, Yang Z, Imrich A, Ning Y, Qin G, Kobzik L. 2006. The macrophage scavenger receptor SR-AI/II and lung defense against pneumococci and particles. Am J Respir Cell Mol Biol 35:474–8.
  • Bianchi MG, Allegri M, Costa AL, Blosi M, Gardini D, Pivo CD, et al. 2015. Titanium dioxide nanoparticles enhance macrophage activation by LPS through a TLR4-dependent intracellular pathway. Toxicol Res 4:385–98.
  • Chen XX, Cheng B, Yang YX, Cao A, Liu JH, Du LJ, et al. 2013. Characterization and preliminary toxicity assay of nano-titanium dioxide additive in sugar-coated chewing gum. Small (Weinheim an Der Bergstrasse, Germany) 9:1765–74.
  • Chen P, Kanehira K, Taniguchi A. 2013. Role of toll-like receptors 3, 4 and 7 in cellular uptake and response to titanium dioxide nanoparticles. Sci Technol Adv Mater 14:015008.
  • Chen H, Seiber JN, Hotze M. 2014. ACS Select on nanotechnology in food and agriculture: a perspective on implications and applications. J Agric Food Chem 62:1209–12.
  • Diehl GE, Longman RS, Zhang JX, Breart B, Galan C, Cuesta A, et al. 2013. Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX(3)CR1(hi) cells. Nature 494:116–20.
  • Droga-Mazovec G, Bojic L, Petelin A, Ivanova S, Romih R, Repnik U, et al. 2008. Cysteine cathepsins trigger caspase-dependent cell death through cleavage of bid and antiapoptotic Bcl-2 homologues. J Biol Chem 283:19140–50.
  • Duncan TV. 2011. The communication challenges presented by nanofoods. Nature Nanotech 6:683–8.
  • Geraets L, Oomen AG, Krystek P, Jacobsen NR, Wallin H, Laurentie M, et al. 2014. Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Part Fibre Toxicol 11:30.
  • Hendren CO, Mesnard X, Droge J, Wiesner MR. 2011. Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ Sci Technol 45:2562–9.
  • Ho CC, Lee HL, Chen CY, Luo YH, Tsai MH, Tsai HT, Lin P. 2017. Involvement of the cytokine-IDO1-AhR loop in zinc oxide nanoparticle-induced acute pulmonary inflammation. Nanotoxicology 11:360–70.
  • Hussain S, Thomassen LC, Ferecatu I, Borot MC, Andreau K, Martens JA, et al. 2010. Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells. Part Fibre Toxicol 7:10.
  • IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. 2010. Carbon black, titanium dioxide, and talc. IARC monographs on the evaluation of carcinogenic risks to humans/World Health Organization, International Agency for Research on Cancer 93:1–413.
  • Jantsch J, Schatz V, Friedrich D, Schroder A, Kopp C, Siegert I, et al. 2015. Cutaneous Na + storage strengthens the antimicrobial barrier function of the skin and boosts macrophage-driven host defense. Cell Metab 21:493–501.
  • Jiao H, Zhang Y, Yan Z, Wang ZG, Liu G, Minshall RD, et al. 2013. Caveolin-1 Tyr14 phosphorylation induces interaction with TLR4 in endothelial cells and mediates MyD88-dependent signaling and sepsis-induced lung inflammation. J Immunol (Baltimore, MD: 1950) 191:6191–9.
  • Kaur IP, Kakkar V, Deol PK, Yadav M, Singh M, Sharma I. 2014. Issues and concerns in nanotech product development and its commercialization. J Control Release 193:51–62.
  • Kim JS, Adamcakova-Dodd A, O'Shaughnessy PT, Grassian VH, Thorne PS. 2011. Effects of copper nanoparticle exposure on host defense in a murine pulmonary infection model. Part Fibre Toxicol 8:29.
  • Kinjyo I, Hanada T, Inagaki-Ohara K, Mori H, Aki D, Ohishi M, et al. 2002. SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity 17:583–91.
  • Kodali V, Littke MH, Tilton SC, Teeguarden JG, Shi L, Frevert CW, et al. 2013. Dysregulation of macrophage activation profiles by engineered nanoparticles. ACS Nano 7:6997–7010.
  • Kong L, Sun L, Zhang H, Liu Q, Liu Y, Qin L, et al. 2009. An essential role for RIG-I in toll-like receptor-stimulated phagocytosis. Cell Host Microbe 6:150–61.
  • Ley K, Pramod AB, Croft M, Ravichandran KS, Ting JP. 2016. How mouse macrophages sense what is going on. Front Immunol 7:204.
  • Mahler GJ, Esch MB, Tako E, Southard TL, Archer SD, Glahn RP, Shuler ML. 2012. Oral exposure to polystyrene nanoparticles affects iron absorption. Nature Nanotech 7:264–71.
  • Medzhitov R, Horng T. 2009. Transcriptional control of the inflammatory response. Nat Rev Immunol 9:692–703.
  • Mishra V, Baranwal V, Mishra RK, Sharma S, Paul B, Pandey AC. 2016. Titanium dioxide nanoparticles augment allergic airway inflammation and Socs3 expression via NF-kappaB pathway in murine model of asthma. Biomaterials 92:90–102.
  • Morimoto Y, Izumi H, Yoshiura Y, Tomonaga T, Lee BW, Okada T, et al. 2016. Comparison of pulmonary inflammatory responses following intratracheal instillation and inhalation of nanoparticles. Nanotoxicology 10:607–18.
  • Mougneau E, Bihl F, Glaichenhaus N. 2011. Cell biology and immunology of Leishmania. Immunol Rev 240:286–96.
  • Murray PJ, Wynn TA. 2011. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–37.
  • Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. 2014. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41:14–20.
  • Pang S, Tang H, Zhuo S, Zang YQ, Le Y. 2010. Regulation of fasting fuel metabolism by toll-like receptor 4. Diabetes 59:3041–8.
  • Peters RJ, van Bemmel G, Herrera-Rivera Z, Helsper HP, Marvin HJ, Weigel S, et al. 2014. Characterization of titanium dioxide nanoparticles in food products: analytical methods to define nanoparticles. J Agric Food Chem 62:6285–93.
  • Presume M, Simon-Deckers A, Tomkiewicz-Raulet C, Le Grand B, Tran Van Nhieu J, Beaune G, et al. 2016. Exposure to metal oxide nanoparticles administered at occupationally relevant doses induces pulmonary effects in mice. Nanotoxicology 10:1535–44.
  • Qiu J. 2012. Nano-safety studies urged in China. Nature 489:350.
  • Ramirez-Carrozzi VR, Braas D, Bhatt DM, Cheng CS, Hong C, Doty KR, et al. 2009. A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell 138:114–28.
  • Rashidi L, Khosravi-Darani K. 2011. The applications of nanotechnology in food industry. Crit Rev Food Sci Nutr 51:723–30.
  • Robichaud CO, Uyar AE, Darby MR, Zucker LG, Wiesner MR. 2009. Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ Sci Technol 43:4227–33.
  • Roger T, Froidevaux C, Le Roy D, Reymond MK, Chanson AL, Mauri D, et al. 2009. Protection from lethal gram-negative bacterial sepsis by targeting Toll-like receptor 4. Proc Natl Acad Sci USA 106:2348–52.
  • Rompelberg C, Heringa MB, van Donkersgoed G, Drijvers J, Roos A, Westenbrink S, et al. 2016. Oral intake of added titanium dioxide and its nanofraction from food products, food supplements and toothpaste by the Dutch population. Nanotoxicology 10:1404–14.
  • Saha RN, Pahan K. 2006. Regulation of inducible nitric oxide synthase gene in glial cells. Antioxid Redox Signal 8:929–47.
  • Scherbart AM, Langer J, Bushmelev A, van Berlo D, Haberzettl P, van Schooten FJ, et al. 2011. Contrasting macrophage activation by fine and ultrafine titanium dioxide particles is associated with different uptake mechanisms. Part Fibre Toxicol 8:31.
  • Shi H, Magaye R, Castranova V, Zhao J. 2013. Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:15.
  • Shvedova AA, Fabisiak JP, Kisin ER, Murray AR, Roberts JR, Tyurina YY, et al. 2008. Sequential exposure to carbon nanotubes and bacteria enhances pulmonary inflammation and infectivity. Am J Respir Cell Mol Biol 38:579–90.
  • Sica A, Mantovani A. 2012. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–95.
  • Sisler JD, Li R, McKinney W, Mercer RR, Ji Z, Xia T, et al. 2016. Differential pulmonary effects of CoO and La2O3 metal oxide nanoparticle responses during aerosolized inhalation in mice. Part Fibre Toxicol 13:42.
  • Toscano M, Ganea GD, Gamero AM. 2011. Cecal ligation puncture procedure. J Vis Exp. (51):2860.
  • Wang Z, Li J, Cho J, Malik AB. 2014. Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils. Nature Nanotech 9:204–10.
  • Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N. 2012. Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–50.
  • Wynn TA, Chawla A, Pollard JW. 2013. Macrophage biology in development, homeostasis and disease. Nature 496:445–55.
  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, et al. 2006. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–807.
  • Yang Y, Doudrick K, Bi X, Hristovski K, Herckes P, Westerhoff P, Kaegi R. 2014. Characterization of food-grade titanium dioxide: the presence of nanosized particles. Environ Sci Technol 48:6391–400.
  • Yazdi AS, Guarda G, Riteau N, Drexler SK, Tardivel A, Couillin I, Tschopp J. 2010. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1alpha and IL-1beta. Proc Natl Acad Sci USA 107:19449–54.
  • Youns M, Hoheisel JD, Efferth T. 2011. Therapeutic and diagnostic applications of nanoparticles. Curr Drug Targets 12:357–65.
  • Zanoni I, Ostuni R, Marek LR, Barresi S, Barbalat R, Barton GM, et al. 2011. CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell 147:868–80.
  • Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. 2008. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83:761–9.
  • Zhang WC, Zheng XJ, Du LJ, Sun JY, Shen ZX, Shi C, et al. 2015. High salt primes a specific activation state of macrophages, M(Na). Cell Res 25:893–910.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.