229
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Cellular proliferation and differentiation induced by single-layer molybdenum disulfide and mediation mechanisms of proteins via the Akt-mTOR-p70S6K signaling pathway

, , , &
Pages 781-793 | Received 13 Jan 2017, Accepted 05 Jul 2017, Published online: 02 Aug 2017

References

  • Akhavan O, Ghaderi E, Hashemi E, Akbari E. 2015. Dose-dependent effects of nanoscale graphene oxide on reproduction capability of mammals. Carbon 95:309–17.
  • Benameur L, Auffan M, Cassien M, Liu W, Culcasi M, Rahmouni H, et al. 2015. DNA damage and oxidative stress induced by CeO2 nanoparticles in human dermal fibroblasts: evidence of a clastogenic effect as a mechanism of genotoxicity. Nanotoxicology 9:696–705.
  • Bertoli F, Garry D, Monopoli MP, Salvati A, Dawson KA. 2016. The intracellular destiny of the protein corona: a study on its cellular internalization and evolution. ACS Nano 10:10471–9.
  • Boyer B, Tucker GC, Vallés AM, Franke WW, Thiery JP. 1989. Rearrangements of desmosomal and cytoskeletal proteins during the transition from epithelial to fibroblastoid organization in cultured rat bladder carcinoma cells. J Cell Biol 109:1495–509.
  • Brotelle T, Bay JO. 2016. PI3K-AKT-mTOR pathway: description, therapeutic development, resistance, predictive/prognostic biomarkers and therapeutic applications for cancer. Bull Cancer 103:18–29.
  • Cheng X, Tian X, Wu A, Li J, Tian J, Chong Y, et al. 2015. Protein corona influences cellular uptake of gold nanoparticles by phagocytic and nonphagocytic cells in a size-dependent manner. ACS Appl Mater Interfaces 7:20568–75.
  • Chong Y, Ge C, Yang Z, Garate JA, Gu Z, Weber JK, et al. 2015. Reduced cytotoxicity of graphene nanosheets mediated by blood-protein coating. ACS Nano 9:5713–24.
  • Chng ELK, Sofer Z, Pumera M. 2014. MoS2 exhibits stronger toxicity with increased exfoliation. Nanoscale 6:14412–18.
  • Dong J, Ma Q. 2016. Myofibroblasts and lung fibrosis induced by carbon nanotube exposure. Part Fibre Toxicol 13:60.
  • Ge C, Tian J, Zhao Y, Chen C, Zhou R, Chai Z. 2015. Towards understanding of nanoparticle-protein corona. Arch Toxicol 89:519–39.
  • Grille SJ, Bellacosa A, Upson J, Klein-Szanto AJ, van Roy F, Lee-Kwon W, et al. 2003. The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res 63:2172–8.
  • Hu W, Peng C, Lv M, Li X, Zhang Y, Chen N, et al. 2011. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5:3693–700.
  • Hu XG, Lu K, Mu L, Kang J, Zhou QX. 2014. Interactions between graphene oxide and plant cells: regulation of cell morphology, uptake, organelle damage, oxidative effects and metabolic disorders. Carbon 80:665–76.
  • Ji DK, Zhang Y, Zang Y, Li J, Chen GR, He XP, et al. 2016. Targeted intracellular production of reactive oxygen species by a 2D molybdenum disulfide glycosheet. Adv Mater Weinheim 28:9356–63.
  • Johnson SM, Gulhati P, Arrieta I, Wang X, Uchida T, Gao T, et al. 2009. Curcumin inhibits proliferation of colorectal carcinoma by modulating Akt/mTOR signaling. Anticancer Res 29:3185–90.
  • Kazim S, Jaeger A, Steinhart M, Pfleger J, Vohlidal J, Bondarev D, et al. 2016. Morphology and kinetics of aggregation of silver nanoparticles induced with regioregular cationic polythiophene. Langmuir 32:2–11.
  • Kenry Chaudhuri PK, Loh KP, Lim CT. 2016. Selective accelerated proliferation of malignant breast cancer cells on planar graphene oxide films. ACS Nano 10:3424–34.
  • Latiff NM, Teo WZ, Sofer Z, Fisher AC, Pumera M. 2015. The cytotoxicity of layered black phosphorus. Chemistry 21:13991–5.
  • Li Y, Feng L, Shi X, Wang X, Yang Y, Yang K, et al. 2014. Surface coating-dependent cytotoxicity and degradation of graphene derivatives: towards the design of non-toxic, degradable nano-graphene. Small 10:1544–54.
  • Liao K, Lin Y, Macosko CW, Haynes CL. 2011. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Interfaces 3:2607–15.
  • Ma JY, Mercer RR, Barger M, Schwegler-Berry D, Scabilloni J, Ma JK, et al. 2012. Induction of pulmonary fibrosis by cerium oxide nanoparticles. Toxicol Appl Pharm 262:255–64.
  • Mahmoudi M, Bertrand N, Zope H, Farokhzad OC. 2016. Emerging understanding of the protein corona at the nano-bio interfaces. Nano Today 11:817–32.
  • Mahmoudi M, Sheibani S, Milani AS, Rezaee F, Gauberti M, Dinarvand R, et al. 2015. Crucial role of the protein corona for the specific targeting of nanoparticles. Nanomedicine (London) 10:215–26.
  • Makhov P, Golovine K, Teper E, Kutikov A, Mehrazin R, Corcoran A, et al. 2014. Piperlongumine promotes autophagy via inhibition of Akt/mTOR signalling and mediates cancer cell death. Br J Cancer 110:899–907.
  • Mu Q, Jiang G, Chen L, Zhou H, Fourches D, Tropsha A, et al. 2014. Chemical basis of interactions between engineered nanoparticles and biological systems. Chem Rev 114:7740–81.
  • Polimeni M, Gulino GR, Gazzano E, Kopecka J, Marucco A, Fenoglio I, et al. 2016. Multi-walled carbon nanotubes directly induce epithelial–mesenchymal transition in human bronchial epithelial cells via the TGF-β-mediated Akt/GSK-3β/SNAIL-1 signalling pathway. Part Fibre Toxicol 13:27.
  • Rashkow JT, Talukdar Y, Lalwani G, Sitharaman B. 2015. Interactions of 1D- and 2D-layered inorganic nanoparticles with fibroblasts and human mesenchymal stem cells. Nanomedicine (London) 10:1693–706.
  • Rauch J, Kolch W, Laurent S, Mahmoudi M. 2013. Big signals from small particles: regulation of cell signaling pathways by nanoparticles. Chem Rev 113:3391–406.
  • Ryoo SR, Kim YK, Kim MH, Min DH. 2010. Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies. ACS Nano 4:6587–98.
  • Saha K, Rahimi M, Yazdani M, Kim ST, Moyano DF, Hou S, et al. 2016. Regulation of macrophage recognition through the interplay of nanoparticle surface functionality and protein corona. ACS Nano 10:4421–30.
  • Shah P, Narayanan TN, Li CZ, Alwarappan S. 2015. Probing the biocompatibility of MoS2 nanosheets by cytotoxicity assay and electrical impedance spectroscopy. Nanotechnology 26:315102.
  • Shinojima N, Yokoyama T, Kondo Y, Kondo S. 2007. Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy 3:635–7.
  • Sisco PN, Wilson CG, Chernak D, Clark JC, Grzincic EM, Ako-Asare K, et al. 2014. Adsorption of cellular proteins to polyelectrolyte-functionalized gold nanorods: a mechanism for nanoparticle regulation of cell phenotype? PLoS One 9:86670.
  • Srinivasan S, Nawaz Z. 2011. E3 ubiquitin protein ligase, E6-associated protein (E6-AP) regulates PI3K-Akt signaling and prostate cell growth. Biochim Biophys Acta 1809:119–27.
  • Teo WZ, Chng ELK, Sofer Z, Pumera M. 2014. Cytotoxicity of exfoliated transition-metal dichalcogenides (MoS2, WS2, and WSe2) is lower than that of graphene and its analogues. Chem Eur J 20:9627–32.
  • Teo WZ, Chng ELK, Sofer Z, Pumera M. 2014. Cytotoxicity of halogenated graphenes. Nanoscale 6:1173–80.
  • Teo WZ, Chua CK, Sofer Z, Pumera M. 2015. Fluorinated nanocarbons cytotoxicity. Chemistry 21:13020–6.
  • Thiery JP, Acloque H, Huang RYJ, Nieto MA. 2009. Epithelial–mesenchymal transitions in development and disease. Cell 139:871–90.
  • Thiery JP, Sleeman JP. 2006. Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–42.
  • Vietti G, Lison D, van den Brule S. 2016. Mechanisms of lung fibrosis induced by carbon nanotubes: towards an Adverse Outcome Pathway (AOP). Part Fibre Toxicol 13:11.
  • Voiry D, Fullon R, Yang J, Silva CDCC, Kappera R, Bozkurt I, et al. 2016. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat Mater 15:1003–9.
  • Wang P, Wang Y, Nie X, Braïni C, Bai R, Chen C. 2015. Multiwall carbon nanotubes directly promote fibroblast-myofibroblast and epithelial–mesenchymal transitions through the activation of the TGF-β/Smad signaling pathway. Small 11:446–55.
  • Wang X, Mansukhani ND, Guiney LM, Ji Z, Chang CH, Wang M, et al. 2015. Differences in the toxicological potential of 2D versus aggregated molybdenum disulfide in the lung. Small 11:5079–87.
  • Wang Z, von dem Bussche A, Qiu Y, Valentin TM, Gion K, Kane AB, et al. 2016. Chemical dissolution pathways of MoS2 nanosheets in biological and environmental media. Environ Sci Technol 50:7208–17.
  • Xu Y, Wang L, Bai R, Zhang T, Chen C. 2015. Silver nanoparticles impede phorbol myristate acetate-induced monocyte-macrophage differentiation and autophagy. Nanoscale 7:16100–9.
  • Yang X, Li Q, Hu G, Wan Z, Yang Z, Liu X, et al. 2016. Controlled synthesis of high-quality crystals of monolayer MoS2 for nanoelectronic device application. Science 59:183.
  • Yin W, Yan L, Yu J, Tian G, Zhou L, Zheng X, et al. 2014. High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 8:6922–33.
  • Yousefi N, Wargenau A, Tufenkji N. 2016. Toward more free-floating model cell membranes: method development and application to their interaction with nanoparticles. ACS Appl Mater Interfaces 8:14339–48.
  • Zaman MH, Trapani LM, Siemeski A, MacKellar D, Gong H, Kamm RD, et al. 2006. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell–matrix adhesion and proteolysis. Proc Natl Acad Sci USA 103:10889–94.
  • Zhang B, Jiang T, Shen S, She X, Tuo Y, Hu Y, et al. 2016. Cyclopamine disrupts tumor extracellular matrix and improves the distribution and efficacy of nanotherapeutics in pancreatic cancer. Biomaterials 103:12–21.
  • Zhu M, Nie G, Meng H, Xia T, Nel A, Zhao Y. 2012. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc Chem Res 46:622–31.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.