556
Views
114
CrossRef citations to date
0
Altmetric
Article

Identification of signaling cascade in the insulin signaling pathway in response to nanopolystyrene particles

, , &
Pages 174-188 | Received 28 May 2018, Accepted 21 Aug 2018, Published online: 07 Feb 2019

References

  • Besseling, E., B. Wang, M. Lurling, and A. A. Koelmans. 2014. “Nanoplastic Affects Growth of S. obliquus and Reproduction of D. magna.” Environmental Science &Amp; Technology 48 (20): 12336–12343. doi: doi:10.1021/es503001d
  • Bolz, D. D., J. L. Tenor, and A. Aballay. 2010. “A Conserved PMK-1/p38 MAPK Is Required in Caenorhabditis elegans Tissue-Specific Immune Response to Yersinia pestis Infection.” The Journal of Biological Chemistry 285 (14): 10832–10840. doi: doi:10.1074/jbc.M109.091629
  • Booth, A. M., B. H. Hansen, M. Frenzel, H. Johnsen, and D. Altin. 2016. “Uptake and Toxicity of Methylmethacrylate-Based Nanoplastic Particles in Aquatic Organisms.” Environmental Toxicology and Chemistry 35 (7): 1641–1649. doi: doi:10.1002/etc.3076
  • Bragigand, V., C. Amiard-Triquet, E. Parlier, P. Boury, P. Marchand, and M. E. Hourch. 2006. “Influence of Biological and Ecological Factors on the Bioaccumulation of Polybrominated Diphenyl Ethers in Aquatic Food Webs from French Estuaries.” The Science of the Total Environment 368 (2–3): 615–626. doi: doi:10.1016/j.scitotenv.2006.04.001
  • Brenner, S. 1974. “The Genetics of Caenorhabditis elegans.” Genetics 77 (1): 71–94.
  • Browne, M. A., S. J. Niven, T. S. Galloway, S. J. Rowland, and R. C. Thompson. 2013. “Microplastic Moves Pollutants and Additives to Worms, Reducing Functions Linked to Health and Biodiversity.” Current Biology : Cb 23 (23): 2388–2392. doi: doi:10.1016/j.cub.2013.10.012
  • Chatterjee, N., Y. Kim, J. Yang, C. P. Roca, S. W. Joo, and J. Choi. 2017. “A Systems Toxicology Approach Reveals the Wnt-MAPK Crosstalk Pathway Mediated Reproductive Failure in Caenorhabditis elegans Exposed to Graphene Oxide (GO) but Not to Reduced Graphene Oxide (rGO).” Nanotoxicology 11 (1): 76–86. doi: doi:10.1080/17435390.2016.1267273
  • Chen, H., H.-R. Li, and D.-Y. Wang. 2017. “Graphene Oxide Dysregulates Neuroligin/NLG-1-Mediated Molecular Signaling in Interneurons in Caenorhabditis elegans.” Scientific Reports 7: 41655. doi:10.1038/srep41655 doi:10.1038/srep41655
  • Cole, M., and T. S. Galloway. 2015. “Ingestion of Nanoplastics and Microplastics by Pacific Oyster Larvae.” Environmental Science and Technology 49 (24): 14625–14632. doi:10.1021/acs.est.5b04099
  • Cole, M., P. Lindeque, C. Halsband, and T. S. Galloway. 2011. “Microplastics as Contaminants in the Marine Environment: A Review.” Marine Pollution Bulletin 62 (12): 2588–2597. doi:10.1016/j.marpolbul.2011.09.025
  • Della Torre, C., E. Bergami, A. Salvati, C. Faleri, P. Cirino, K. A. Dawson, and I. Corsi. 2014. “Accumulation and Embryotoxicity of Polystyrene Nanoparticles at Early Stage of Development of Sea Urchin Embryos Paracentrotus Lividus.” Environmental Science and Technology 48 (20): 12302–12311. doi:10.1021/es502569w
  • Ding, X.-C., Q. Rui, and D.-Y. Wang. 2018. “Functional Disruption in Epidermal Barrier Enhances Toxicity and Accumulation of Graphene Oxide.” Ecotoxicology and Environmental Safety 163: 456–464. doi:10.1016/j.ecoenv.2018.07.102
  • Ding, X.-C., J. Wang, Q. Rui, and D.-Y. Wang. 2018. “Long-Term Exposure to Thiolated Graphene Oxide in the Range of μg/L Induces Toxicity in Nematode Caenorhabditis elegans.” Science of the Total Environment 616–617: 29–37. doi:10.1016/j.scitotenv.2017.10.307
  • Dong, S.-S., M. Qu, Q. Rui, and D.-Y. Wang. 2018. “Combinational Effect of Titanium Dioxide Nanoparticles and Nanopolystyrene Particles at Environmentally Relevant Concentrations on Nematodes Caenorhabditis elegans.” Ecotoxicology and Environmental Safety 161: 444–450. doi:10.1016/j.ecoenv.2018.06.021
  • Donkin, S., and P. L. Williams. 1995. “Influence of Developmental Stage, Salts and Food Presence on Various End Points Using Caenorhabditis elegans for Aquatic Toxicity Testing.” Environmental Toxicology and Chemistry 14 (12): 2139–2147. doi:10.1897/1552-8618(1995)14[2139:IODSSA]2.0.CO;2
  • Espelt, M. V., A. Y. Estevez, X. Yin, and K. Strange. 2005. “Oscillatory Ca2+ Signaling in the Isolated Caenorhabditis elegans Intestine: Role of the Inositol-1,4,5-Trisphosphate Receptor and Phospholipases C Beta and Gamma.” The Journal of General Physiology 126 (4): 379–392. doi:10.1085/jgp.200509355
  • Gottschalk, F., T. Sonderer, R. W. Scholz, and B. Nowack. 2009. “Modeled Environmental Concentrations of Engineered Nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for Different Regions.” Environmental Science and Technology 43 (24): 9216–9222. doi:10.1021/es9015553
  • Greven, A. C., T. Merk, F. Karagöz, K. Mohr, M. Klapper, B. Jovanović, and D. Palić. 2016. “Polycarbonate and Polystyrene Nanoplastic Particles Act as Stressors to the Innate Immune System of Fathead Minnow (Pimephales Promelas).” Environmental Toxicology and Chemistry 35 (12): 3093–3100. doi:10.1002/etc.3501
  • Haegerbaeumer, A., S. Höss, P. Heininger, and W. Traunspurger. 2018. “Response of Nematode Communities to Metals and PAHs in Freshwater Microcosms.” Ecotoxicology and Environmental Safety 148: 244–253. doi:10.1016/j.ecoenv.2017.10.030
  • Honnen, S. 2017. “Caenorhabditis elegans as a Powerful Alternative Model Organism to Promote Research in Genetic Toxicology and Biomedicine.” Archives of Toxicology 91: 2029–2044. doi:10.1007/s00204-017-1944-7.
  • Horton, A. A., A. Walton, D. J. Spurgeon, E. Lahive, and C. Svendsen. 2017. “Microplastics in Freshwater and Terrestrial Environments: evaluating the Current Understanding to Identify the Knowledge Gaps and Future Research Priorities.” The Science of the Total Environment 586: 127–141. doi:10.1016/j.scitotenv.2017.01.190
  • Hu, L., L. Su, Y. Xue, J. Mu, J. Zhu, J. Xu, and H. Shi. 2016. “Uptake, Accumulation and Elimination of Polystyrene Microspheres in Tadpoles of Xenopus Tropicalis.” Chemosphere 164: 611–617. doi:10.1016/j.chemosphere.2016.09.002
  • Huang, C. W., S. W. Li, and V. Hsiu-Chuan Liao. 2017. “Chronic ZnO-NPs Exposure at Environmentally Relevant Concentrations Results in Metabolic and Locomotive Toxicities in Caenorhabditis elegans.” Environmental Pollution. 220(PtB): 1456–1464. doi:10.1016/j.envpol.2016.10.086.
  • Hughes, S. L., and S. R. Sturzenbaum. 2007. “Single and Double Metallothionein Knockout in the Nematode C. elegans Reveals Cadmium Dependent and Independent Toxic Effects on Life History Traits.” Environmental Pollution 145 (2): 395–400. doi:10.1016/j.envpol.2006.06.003
  • Hunter, T., W. H. Bannister, and G. J. Hunter. 1997. “Cloning, Expression, and Characterization of Two Manganese Superoxide Dismutases from Caenorhabditis elegans.” Journal of Biological Chemistry 272 (45): 28652–28659. doi:10.1074/jbc.272.45.28652
  • Kenyon, C. J. 2010. “The Genetics of Ageing.” Nature 464 (7288): 504–512. doi:10.1038/nature08980
  • Kimura, K. D., H. A. Tissenbaum, Y. Liu, and G. Ruvkun. 1997. “Daf-2, an Insulin Receptor-like Gene That Regulates Longevity and Diapause in Caenorhabditis elegans.” Science (New York, N.Y.) 277 (5328): 942–946. doi:10.1126/science.277.5328.942
  • Lapierre, L. R., and M. Hansen. 2012. “Lessons from C. elegans: signaling Pathways for Longevity.” Trends in Endocrinology and Metabolism: Tem 23 (12): 637–644. doi:10.1016/j.tem.2012.07.007
  • Lee, K., W. J. Shim, O. Y. Kwon, and J. Kang. 2013. “Size-Dependent Effects of Micro Polystyrene Particles in the Marine Copepod Tigriopus Japonicus.” Environmental Science and Technology 47 (19): 11278–11283. doi:10.1021/es401932b
  • Lei, L.,. S. Wu, S. Lu, M. Liu, Y. Song, Z. Fu, H. Shi, K. M. Raley-Susman, and D. He. 2018. “Microplastic Particles Causes Intestinal Damage and Other Adverse Effects in Zebrafish Danio Retio and Nematode Caenorhabditis elegans.” Science of the Total Environment 619–620: 1–8. doi:10.1016/j.scitotenv.2017.11.103
  • Lenz, R., K. Enders, and T. G. Nielsen. 2016. “Microplastic Exposure Studies Should Be Environmentally Realistic.” Proceedings of the National Academy of Sciences of the United States of America 113 (29): E4121–E4122. doi:10.1073/pnas.1606615113
  • Li, W.-J., D.-Y. Wang, and D.-Y. Wang. 2018. “Regulation of the Response of Caenorhabditis elegans to Simulated Microgravity by p38 Mitogen-Activated Protein Kinase Signaling.” Scientific Reports 8: 857. doi:10.1038/s41598-018-19377-z
  • Libina, N., J. R. Berman, and C. Kenyon. 2003. “Tissue-Specific Activities of C. elegans DAF-16 in the Regulation of Lifespan.” Cell 115 (4): 489–502. doi:10.1016/S0092-8674(03)00889-4
  • Lin, K., H. Hsin, N. Libina, and C. Kenyon. 2001. “Regulation of the Caenorhabditis elegans Longevity Protein DAF-16 by Insulin/IGF-1 and Germline Signaling.” Nature Genetics 28 (2): 139–145. doi:10.1038/88850
  • Luo, X., S. Xu, Y. Yang, Y. Zhang, S. Wang, S. Chen, A. Xu, and L. Wu. 2017. “A Novel Method for Assessing the Toxicity of Silver Nanoparticles in Caenorhabditis elegans.” Chemosphere 168: 648–657. doi:10.1016/j.chemosphere.2016.11.011
  • Ma, Y., A. Huang, S. Cao, F. Sun, L. Wang, H. Guo, and R. Ji. 2016. “Effects of Nanoplastics and Microplastics on Toxicity, Bioaccumulation, and Environmental Fate of Phenanthrene in Fresh Water.” Environmental Pollution (Barking, Essex : 1987) 219: 166–173. doi:10.1016/j.envpol.2016.10.061
  • Manfra, L., A. Rotini, E. Bergami, G. Grassi, C. Faleri, and I. Corsi. 2017. “Comparative Ecotoxicity of Polystyrene Nanoparticles in Natural Seawater and Reconstituted Seawater Using the Rotifer Brachionus plicatilis.” Ecotoxicology and Environmental Safety 145: 557–563. doi:10.1016/j.ecoenv.2017.07.068
  • Martins, R., G. J. Lithgow, and W. Link. 2016. “Long Live FOXO: unraveling the Role of FOXO Proteins in Aging and Longevity.” Aging Cell 15 (2): 196–207. doi:10.1111/acel.12427
  • Mattsson, K., L.-A. Hansson, and T. Cedervall. 2015. “Nano-Plastics in the Aquatic Environment.” Environmental Science Processes and Impacts 17 (10): 1712–1721. doi:10.1039/C5EM00227C
  • Mendenhall, A. R., B. LaRue, and P. A. Padilla. 2006. “Glyceraldehyde-3-Phosphate Dehydrogenase Mediates Anoxia Response and Survival in Caenorhabditis elegans.” Genetics 174 (3): 1173–1187. doi:10.1534/genetics.106.061390
  • Mueller, N., and B. Nowack. 2008. “Exposure Modeling of Engineered Nanoparticles in the Environment.” Environmental Science and Technology 42 (12): 4447–4453. doi:10.1021/es7029637
  • Murphy, C. T., and P. J. Hu. 2013. “Insulin/Insulin-like Growth Factor Signaling in C. elegans. Wormbook.” WormBook. doi:10.1895/wormbook.1.164.1.
  • Murphy, C. T., S. A. McCarroll, C. I. Bargmann, A. Fraser, R. S. Kamath, J. Ahringer, H. Li, and C. Kenyon. 2003. “Genes That Act Downstream of DAF-16 to Influence the Lifespan of Caenorhabditis elegans.” Nature 424 (6946): 277–284. doi:10.1038/nature01789
  • Pan, H., and T. Finkel. 2017. “Key Proteins and Pathways That Regulate Lifespan.” The Journal of Biological Chemistry 292 (16): 6452–6460. doi:10.1074/jbc.R116.771915
  • Piechulek, A., and A. von Mikecz. 2017. “Life Span-Resolved Nanotoxicology Enables Identification of Age-Associated Neuromuscular Vulnerabilities in the Nematode Caenorhabditis elegans.” Environmental Pollution 233: 1095–1103. doi:10.1016/j.envpol.2017.10.012.
  • Pinkston-Gosse, J., and C. Kenyon. 2007. “DAF-16/FOXO Targets Genes That Regulate Tumor Growth in Caenorhabditis elegans.” Nature Genetics 39 (11): 1403–1409. doi:10.1038/ng.2007.1
  • Pukkila-Worley, R., R. L. Feinbaum, N. V. Kirienko, J. Larkins-Ford, A. L. Conery, and F. M. Ausubel. 2012. “Stimulation of Host Immune Defenses by a Small Molecule Protects C. elegans from Bacterial Infection.” PLoS Genetics 8 (6): e1002733. doi:10.1371/journal.ppat
  • Qadota, H., M. Inoue, T. Hikita, M. Koppen, J. D. Hardin, M. Amano, D. G. Moerman, and K. Kaibuchi. 2007. “Establishment of a Tissue-Specific RNAi System in C. elegans.” Gene 400 (1–2): 166–173. doi:10.1016/j.gene.2007.06.020
  • Qu, M., Y.-H. Li, Q.-L. Wu, Y.-K. Xia, and D.-Y. Wang. 2017. “Neuronal ERK Signaling in Response to Graphene Oxide in Nematode Caenorhabditis elegans.” Nanotoxicology 11 (4): 520–533. doi:10.1080/17435390.2017.1315190
  • Qu, M., K.-N. Xu, Y.-H. Li, G. Wong, and D.-Y. Wang. 2018. “Using Acs-22 Mutant Caenorhabditis elegans to Detect the Toxicity of Nanopolystyrene Particles.” Science of the Total Environment 643: 119–126. doi:10.1016/j.scitotenv.2018.06.173
  • Ren, M.-X., L. Zhao, X.-C. Ding, N. Krasteva, Q. Rui, and D.-Y. Wang. 2018. “Developmental Basis for Intestinal Barrier against the Toxicity of Graphene Oxide.” Particle and Fibre Toxicology. 15(1): 26. doi:10.1186/s12989-018-0262-4.
  • Ren, M.-X., L. Zhao, X. Lv, and D.-Y. Wang. 2017. “Antimicrobial Proteins in the Response to Graphene Oxide in Caenorhabditis elegans.” Nanotoxicology 11 (4): 578–590. doi:10.1080/17435390.2017.1329954
  • Shen, Y., L. F. Ng, N. P. W. Low, T. Hagen, J. Gruber, and T. Inoue. 2016. “C. elegans Miro-1 Mutation Reduces the Amount of Mitochondria and Extends Life Span.” PLoS ONE 11 (4): e0153233. doi:10.1371/journal.pone.0153233
  • Sijen, T., J. Fleenor, F. Simmer, K. L. Thijssen, S. Parrish, L. Timmons, R. H. A. Plasterk, and A. Fire. 2001. “On the Role of RNA Amplification in dsRNA-triggered gene silencing.” Cell 107 (4): 465–476. doi:10.1016/S0092-8674(01)00576-1
  • Sussarellu, S.,. M. Suquet, Y. Thomas, C. Lambert, C. Fabioux, M. E. J. Pernet, N. Le Goic., et al. 2016. “Oyster Reproduction Is Affected by Exposure to Polystyrene Microplastics.” Proceedings of the National Academy of Sciences 113 (9): 2430–2435. doi:10.1073/pnas.1519019113
  • Tepper, R. G., J. Ashraf, R. Kaletsky, G. Kleemann, C. T. Murphy, and H. J. Bussemaker. 2013. “PQM-1 Complements DAF-16 as a Key Transcriptional Regulator of DAF-2-Mediated Development and Longevity.” Cell 154 (3): 676–690. doi:10.1016/j.cell.2013.07.006
  • Wolfram, G., S. Höss, C. Orendt, C. Schmitt, Z. Adámek, N. Bandow, M. Großschartner., et al. 2012. “Assessing the Impact of Chemical Pollution on Benthic Invertebrates from Three Different European Rivers Using a Weight-of-Evidence Approach.” Science of the Total Environment 438: 498–509. doi:10.1016/j.scitotenv.2012.07.065
  • Wright, S. L., and F. J. Kelly. 2017. “Plastic and Human Health: A Micro Issue?.” Environmental Science and Technology 51 (12): 6634–6647. doi:10.1021/acs.est.7b00423
  • Wu, Q.-L., X.-X. Han, D. Wang, F. Zhao, and D.-Y. Wang. 2017. “Coal Combustion Related Fine Particulate Matter (PM2.5) Induces Toxicity in Caenorhabditis elegans by Dysregulating microRNA Expression.” Toxicology Research 6 (4): 432–441. doi:10.1039/C7TX00107J
  • Wu, M., X. Kang, Q. Wang, C. Zhou, C. Mohan, and A. Peng. 2017. “Regulator of G Protein Signaling-1 Modulates Paraquat-Induced Oxidative Stress and Longevity via the Insulin like Signaling Pathway in Caenorhabditis elegans.” Toxicology Letters 273: 97–105. doi:10.1016/j.toxlet.2017.03.027
  • Wu, Q.-L., L.-T. Zhi, Y.-Y. Qu, and D.-Y. Wang. 2016. “Quantum Dots Increased Fat Storage in Intestine of Caenorhabditis elegans by Influencing Molecular Basis for Fatty Acid Metabolism.” Nanomedicine: Nanotechnology Biology and Medicine 12 (5): 1175–1184. doi:10.1016/j.nano.2016.01.016
  • Wyatt, L. H., S. E. Diringer, L. A. Rogers, H. Hsu-Kim, W. K. Pan, and J. N. Meyer. 2016. “Antagonistic Growth Effects of Mercury and Selenium in Caenorhabditis elegans Are Chemical-Species-Dependent and Do Not Depend on Internal Hg/Se Ratios.” Environmental Science and Technology 50 (6): 3256–3264. doi:10.1021/acs.est.5b06044
  • Xiao, G.-S., H. Chen, N. Krasteva, Q.-Z. Liu, and D.-Y. Wang. 2018. “Identification of Interneurons Required for the Aversive Response of Caenorhabditis elegans to Graphene Oxide.” Journal of Nanobiotechnology 16 (1): 45. doi:10.1186/s12951-018-0373-y
  • Xiao, G.-S., L. Zhao, Q. Huang, J.-N. Yang, H.-H. Du, D.-Q. Guo, M.-X. Xia, G.-M. Li, Z.-X. Chen, and D.-Y. Wang. 2018. “Toxicity Evaluation ofWanzhou Watershed of Yangtze Three Gorges Reservior in the Flood Season in Caenorhabditis elegans.” Scientific Reports 8: 6734. doi:10.1038/s41598-018-25048-w
  • Xiao, G.-S., L.-T. Zhi, X.-C. Ding, Q. Rui, and D.-Y. Wang. 2017. “Value of Mir-247 in Warning Graphene Oxide Toxicity in Nematode Caenorhabditis elegans.” RSC Advances 7 (83): 52694–52701. doi:10.1039/C7RA09100A
  • Yang, R.-L., M.-X. Ren, Q. Rui, and D.-Y. Wang. 2016. “A Mir-231-Regulated Protection Mechanism against the Toxicity of Graphene Oxide in Nematode Caenorhabditis elegans.” Scientific Reports 6: 32214. doi:10.1038/srep32214
  • Yang, R.-L., Q. Rui, L. Kong, N. Zhang, Y. Li, X.-Y. Wang, J. Tao., et al. 2016. “Metallothioneins Act Downstream of Insulin Signaling to Regulate Toxicity of Outdoor Fine Particulate Matter (PM2.5) during Spring Festival in Beijing in Nematode Caenorhabditis elegans.” Toxicology Research 5 (4): 1097–1105. doi:10.1039/C6TX00022C
  • Yin, J., R. Liu, Z. Jian, D. Yang, Y. Pu, L. Yin, and D. Wang. 2018. “Di (2-ethylhexyl) phthalate-induced reproductive toxicity involved in dna damage-dependent oocyte apoptosis and oxidative stress in Caenorhabditis elegans.” Ecotoxicology and Environmental Safety 163: 298–306. doi:10.1016/j.ecoenv.2018.07.066
  • Yu, C. W., and V. H. Liao. 2016. “Transgenerational Reproductive Effects of Arsenite Are Associated with H3K4 Dimethylation and SPR-5 Downregulation in Caenorhabditis elegans.” Environmental Science and Technology 50 (19): 10673–10681. doi:10.1021/acs.est.6b02173
  • Zhao, L., J.-T. Kong, N. Krasteva, and D.-Y. Wang. 2018. “Deficit in Epidermal Barrier Induces Toxicity and Translocation of PEG Modified Graphene Oxide in Nematodes.” Toxicology Research. doi:10.1039/C8TX00136G.
  • Zhao, L., M. Qu, G. Wong, and D.-Y. Wang. 2017. “Transgenerational Toxicity of Nanopolystyrene Particles in the Range of μg/L in Nematode Caenorhabditis elegans.” Environmental Science: Nano 4 (12): 2356–2366. doi:10.1039/C7EN00707H
  • Zhao, L., Q. Rui, and D.-Y. Wang. 2017. “Molecular Basis for Oxidative Stress Induced by Simulated Microgravity in Nematode Caenorhabditis elegans.” Science of the Total Environment 607–608: 1381–1390. doi:10.1016/j.scitotenv.2017.07.088
  • Zhao, L., H.-X. Wan, Q.-Z. Liu, and D.-Y. Wang. 2017. “Multi-Walled Carbon Nanotubes-Induced Alterations in microRNA Let-7 and Its Targets Activate a Protection Mechanism by Conferring a Developmental Timing Control.” Particle and Fibre Toxicology 14: 27. doi:10.1186/s12989-017-0208-2
  • Zhao, Y.-L., R.-L. Yang, Q. Rui, and D.-Y. Wang. 2016a. “Intestinal Insulin Signaling Encodes Two Different Molecular Mechanisms for the Shortened Longevity Induced by Graphene Oxide in Caenorhabditis elegans.” Scientific Reports 6: 24024. doi:10.1038/srep24024
  • Zhao, Y.-L., J.-N. Yang, and D.-Y. Wang. 2016b. “A microRNA-Mediated Insulin Signaling Pathway Regulates the Toxicity of Multi-Walled Carbon Nanotubes in Nematode Caenorhabditis elegans.” Scientific Reports 6: 23234. doi:10.1038/srep23234
  • Zhi, L.-T., W. Fu, X. Wang, and D.-Y. Wang. 2016. “ACS-22, a Protein Homologous to Mammalian Fatty Acid Transport Protein 4, Is Essential for the Control of Toxicity and Translocation of Multi-Walled Carbon Nanotubes in Caenorhabditis elegans.” RSC Advances 6 (5): 4151–4159. doi:10.1039/C5RA23543J
  • Zhou, D., J. Yang, H. Li, C. Cui, Y. Yu, Y. Liu, and K. Lin. 2016. “The Chronic Toxicity of Bisphenol a to Caenorhabditis elegans after Long-Term Exposure at Environmentally Relevant Concentrations.” Chemosphere 154: 546–551. doi:10.1016/j.chemosphere.2016.04.011
  • Zhuang, Z.-H., M. Li, H. Liu, L.-B. Luo, W.-D. Gu, Q.-L. Wu, and D.-Y. Wang. 2016. “Function of RSKS-1-AAK-2-DAF-16 Signaling Cascade in Enhancing Toxicity of Multi-Walled Carbon Nanotubes Can Be Suppressed by Mir-259 Activation in Caenorhabditis elegans.” Scientific Reports 6: 32409. doi:10.1038/srep32409
  • Zuo, Y. T., Y. Hu, W. W. Lu, J. J. Cao, F. Wang, X. Han, W. Q. Lu, and A. L. Liu. 2017. “Toxicity of 2,6-Dichloro-1,4-Benzoquinone and Five Regulated Drinking Water Disinfection by-Products for the Caenorhabditis elegans Nematode.” Journal of Hazardous Materials 321: 456–463. doi:10.1016/j.jhazmat.2016.09.038

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.