513
Views
21
CrossRef citations to date
0
Altmetric
Articles

Material-specific properties applied to an environmental risk assessment of engineered nanomaterials – implications on grouping and read-across concepts

ORCID Icon & ORCID Icon
Pages 623-643 | Received 29 Nov 2018, Accepted 07 Jan 2019, Published online: 07 Feb 2019

References

  • Adam, V., and B. Nowack. 2017. “European Country-specific Probabilistic Assessment of Nanomaterial Flows towards Landfilling, incineration and Recycling.” Environmental Science: Nano 4: 1961–1973. doi:10.1039/C7EN00487G.
  • Arts, J. H., M. A. Irfan, A. M. Keene, R. Kreiling, D. Lyon, M. Maier, K. Michel., et al. 2016. “Case Studies Putting the Decision-making Framework for the Grouping and Testing of Nanomaterials (DF4nanoGrouping) into Practice.” Regulatory Toxicology and Pharmacology 76: 234–261. doi:10.1016/j.yrtph.2015.11.020.
  • Belanger, S., M. Barron, P. Craig, S. Dyer, M. Galay-Burgos, M. Hamer, S. Marshall, L. Posthuma, S. Raimondo, and P. Whitehouse. 2017. “Future Needs and Recommendations in the Development of Species Sensitivity Distributions: Estimating Toxicity Thresholds for Aquatic Ecological Communities and Assessing Impacts of Chemical Exposures.” Integrated Environmental Assessment and Management 13 (4):664–674. doi:10.1002/ieam.1841.
  • Beyth, N., Y. Houri-Haddad, A. Domb, W. Khan, and R. Hazan. 2015. “Alternative Antimicrobial Approach: nano-antimicrobial Materials.” Evidence Based Complementary and Alternative Medicine 2015: 1. doi:10.1155/2015/246012.
  • Bornhöft, N. A., T. Y. Sun, L. M. Hilty, and B. Nowack. 2016. “A Dynamic Probabilistic Material Flow Modeling Method.” Environmental Modelling & Software 76: 69–80. doi:10.1016/j.envsoft.2015.11.012.
  • Caballero-Guzman, A.,. T. Sun, and B. Nowack. 2015. “Flows of Engineered Nanomaterials through the Recycling Process in Switzerland.” Waste Management 36: 33–43. doi:10.1016/j.wasman.2014.11.006.
  • Cedergreen, N., N. H. Spliid, and J. C. Streibig. 2004. “Species-specific Sensitivity of Aquatic Macrophytes towards Two Herbicides.” Ecotoxicology and Environmental Safety 58 (3):314–323. doi:10.1016/j.ecoenv.2004.04.002.
  • Chen, G., W. J. Peijnenburg, Y. Xiao, and M. G. Vijver. 2018. “Developing Species Sensitivity Distributions for Metallic Nanomaterials considering the Characteristics of Nanomaterials, experimental Conditions, and Different Types of Endpoints.” Food and Chemical Toxicology 112: 563–570. doi:10.1016/j.fct.2017.04.003.
  • Coll, C., D. Notter, F. Gottschalk, T. Sun, C. Som, and B. Nowack. 2016. “Probabilistic Environmental Risk Assessment of Five Nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and Fullerenes).” Nanotoxicology 10 (4):436–444. doi:10.3109/17435390.2015.1073812.
  • Dale, A. L., E. A. Casman, G. V. Lowry, J. R. Lead, E. Viparelli, and M. Baalousha. 2015. “Modeling Nanomaterial Environmental Fate in Aquatic Systems.” Environmental Science & Technology 49: 2587–2593.
  • DE Matteis, V., M. Cascione, V. Brunetti, C. C. Toma, and R. Rinaldi. 2016. “Toxicity Assessment of Anatase and Rutile Titanium Dioxide Nanoparticles: The Role of Degradation in Different pH Conditions and Light Exposure.” Toxicology in Vitro 37: 201–210. doi:10.1016/j.tiv.2016.09.010.
  • ECHA 2008. Guidance on information requirements and chemical safety assessment chapter R.10: Characterisation of dose [concentration]-response for environment. Helsinki, Finland: European Chemicals Agency (ECHA).
  • ECHA 2016. Guidance on information requirements and chemical safety assessment chapter R.16: Environmental exposure estimation. 3.0 ed. Helsinki, Finland: European Chemicals Agency (ECHA).
  • ECHA 2017. Appendix R.6-1: Recommendations for nanomaterials applicable to the guidance on QSARs and grouping of chemicals. Helsinki, Finland: European Chemicals Agency.
  • Fadeel, B., L. Farcal, B. Hardy, S. Vazquez-Campos, D. Hristozov, A. Marcomini, I. Lynch, E. Valsami-Jones, H. Alenius, and K. Savolainen. 2018. “Advanced Tools for the Safety Assessment of Nanomaterials.” Nature Nanotechnology 13 (7):537–543. doi:10.1038/s41565-018-0185-0.
  • Falinski, M. M., D. L. Plata, S. S. Chopra, T. L. Theis, L. M. Gilbertson, and J. B. Zimmerman. 2018. “A Framework for Sustainable Nanomaterial Selection and Design Based on Performance, hazard, and Economic Considerations.” Nature Nanotechnology 13 (8):708–714. doi:10.1038/s41565-018-0120-4.
  • Garner, K. L., S. Suh, and A. A. Keller. 2017. “Assessing the Risk of Engineered Nanomaterials in the Environment: Development and Application of the nanoFate Model.” Environmental Science & Technology 51: 5541–5551. doi:10.1021/acs.est.6b05279.
  • Garner, K. L., S. Suh, H. S. Lenihan, and A. A. Keller. 2015. “Species Sensitivity Distributions for Engineered Nanomaterials.” Environmental Science & Technology 49 (9):5753. doi:10.1021/acs.est.5b00081.
  • Giese, B., F. Klaessig, B. Park, R. Kaegi, M. Steinfeldt, H. Wigger, A. VON Gleich, and F. Gottschalk. 2018. “Risks, Release and Concentrations of Engineered Nanomaterial in the Environment.” Scientific Reports 8 (1):1565.
  • Gilbertson, L. M., J. B. Zimmerman, D. L. Plata, J. E. Hutchison, and P. T. Anastas. 2015. “Designing Nanomaterials to Maximize Performance and Minimize Undesirable Implications Guided by the Principles of Green Chemistry.” Chemical Society Reviews 44 (16):5758–5777. doi:10.1039/C4CS00445K.
  • Godwin, H., C. Nameth, D. Avery, L. L. Bergeson, D. Bernard, E. Beryt, W. Boyes., et al. 2015. “Nanomaterial Categorization for Assessing Risk Potential to Facilitate Regulatory Decision-Making.” ACS Nano 9 (4):3409–3417. doi:10.1021/acsnano.5b00941.
  • Gottschalk, F., E. Kost, and B. Nowack. 2013. “Engineered Nanomaterials in Water and Soils: a Risk Quantification Based on Probabilistic Exposure and Effect Modeling.” Environmental Toxicology and Chemistry 32 (6):1278–1287. doi:10.1002/etc.2177.
  • Gottschalk, F., C. Lassen, J. Kjoelholt, F. Christensen, and B. Nowack. 2015. “Modeling Flows and Concentrations of Nine Engineered Nanomaterials in the Danish Environment.” International Journal of Environmental Research and Public Health 12 (5):5581–5602. doi:10.3390/ijerph120505581.
  • Gottschalk, F., and B. Nowack. 2013. “A Probabilistic Method for Species Sensitivity Distributions Taking into account the Inherent Uncertainty and Variability of Effects to Estimate Environmental Risk.” Integrated Environmental Assessment and Management 9 (1):79–86. doi:10.1002/ieam.1334.
  • Gottschalk, F., C. Ort, R. W. Scholz, and B. Nowack. 2011. “Engineered Nanomaterials in Rivers - Exposure Scenarios for Switzerland at High Spatial and Temporal Resolution.” Environmental Pollution 159 (12):3439–3445. doi:10.1016/j.envpol.2011.08.023.
  • Gottschalk, F., T. Sonderer, R. W. Scholz, and B. Nowack. 2009. “Modeled Environmental Concentrations of Engineered Nanomaterials (TiO(2), ZnO, Ag, CNT, Fullerenes) for Different Regions.” Environmental Science & Technology 43: 9216–9222. doi:10.1021/es9015553.
  • Heggelund, L.,. S. F. Hansen, T. F. Astrup, and A. Boldrin. 2016. “Semi-quantitative Analysis of Solid Waste Flows from Nano-enabled Consumer Products in Europe, Denmark and the United Kingdom - Abundance, distribution and Management.” Waste Management 56: 584–592. doi:10.1016/j.wasman.2016.05.030.
  • Hendren, C. O., A. R. Badireddy, E. Casman, and M. R. Wiesner. 2013. “Modeling Nanomaterial Fate in Wastewater Treatment: Monte Carlo Simulation of Silver Nanoparticles (nano-Ag).” Sciences of the Total Environment 449: 418–425. doi:10.1016/j.scitotenv.2013.01.078.
  • Holden, P. A., F. Klaessig, R. F. Turco, J. H. Priester, C. M. Rico, H. Avila-Arias, M. Mortimer, K. Pacpaco, and J. L. Gardea-Torresdey. 2014. “Evaluation of Exposure Concentrations Used in Assessing Manufactured Nanomaterial Environmental Hazards: are They Relevant?” Environmental Science & Technology 48 (18):10541–10551. doi:10.1021/es502440s.
  • Hund-Rinke, K.,. K. Schlich, D. Kühnel, B. Hellack, H. Kaminski, and C. Nickel. 2018. “Grouping Concept for Metal and metal oxide Nanomaterials with Regard to Their Ecotoxicological Effects on Algae, daphnids and Fish Embryos.” NanoImpact 9: 52–60. doi:10.1016/j.impact.2017.10.003.
  • Jackson, P., N. R. Jacobson, A. Baun, R. Birkedal, D. Kühnel, K. A. Jensen, U. Vogel, and H. Wallin. 2013. “Bioaccumulation and Ecotoxicity of Carbonnanotubes.” Chemistry Central Journal 7:1–21.
  • Kawecki, D., P. R. W. Scheeder, and B. Nowack. 2018. “Probabilistic Material Flow Analysis of Seven Commodity Plastics in Europe.” Environmental Science &Amp; Technology 52 (17):9874–88.
  • Kubiak, K., D. Szeliga, J. Sieniaswki, and A. Onyszko. 2015. The Unidirectional Crystallization of Metals and Alloys (Turbine Blades). In: Nishinga, T. & Rudolph, P. (eds.) Handbook of crystal growth. Amsterdam, Boston, Heidelberg, london., New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo: Elsevier.
  • Lamon, L., K. Aschberger, D. Asturiol, A. Richarz, and A. Worth. 2018. “Grouping of Nanomaterials to Read-across Hazard Endpoints: a Review.” Nanotoxicology :1–19. doi:10.1080/17435390.2018.1506060.
  • Landvik, N. E., V. Skaug, B. Mohr, J. Verbeek, and S. Zienolddiny. 2018. “Criteria for Grouping of Manufactured Nanomaterials to Facilitate Hazard and Risk Assessment, a Systematic Review of Expert Opinions.” Regulatory Toxicology and Pharmacology 95: 270–279. doi:10.1016/j.yrtph.2018.03.027.
  • Lowry, G. V., K. B. Gregory, S. C. Apte, and J. R. Lead. 2012. “Transformations of Nanomaterials in the Environment.” Environmental Science & Technology 46 (13):6893–6899. doi:10.1021/es300839e.
  • Luttrell, T.,. S. Halpegamage, J. Tao, A. Kramer, E. Sutter, and M. Batzill. 2014. “Why Is Anatase a Better Photocatalyst than rutile?-Model studies on epitaxial TiO2 films .” Scientific Reports 4: 4043.
  • Lynch, I., C. Weiss, and E. Valsami-Jones. 2014. “A Strategy for Grouping of Nanomaterials Based on Key Physico-chemical Descriptors as a Basis for Safer-by-design NMs.” Nano Today 9 (3):266–270. doi:10.1016/j.nantod.2014.05.001.
  • Mech, A., K. Rasmussen, P. Jantunen, L. Aicher, M. Alessandrelli, U. Bernauer, E. A. J. Bleeker., et al. 2018. “Insights into Possibilities for Grouping and Read-across for Nanomaterials in EU Chemicals Legislation.” Nanotoxicology :1–23. doi:10.1080/17435390.2018.1513092.
  • Meesters, J. A., A. A. Koelmans, J. T. Quik, A. J. Hendriks, and D. Van de Meent. 2014. “Multimedia Modeling of Engineered Nanoparticles with SimpleBox4nano: model Definition and Evaluation.” Environmental Science & Technology 48: 5726–5736. doi:10.1021/es500548h.
  • Meesters, J. A. J., J. T. K. Quik, A. A. Koelmans, A. J. Hendriks, and D. Van de Meent. 2016. “Multimedia Environmental Fate and Speciation of Engineered Nanoparticles: a Probabilistic Modeling Approach.” Environmental Science: Nano 3: 715–727. doi:10.1039/C6EN00081A.
  • Mitrano, D. M., S. Motellier, S. Clavaguera, and B. Nowack. 2015. “Review of Nanomaterial Aging and Transformations through the Life Cycle of Nano-enhanced Products.” Environment International 77: 132–147. doi:10.1016/j.envint.2015.01.013.
  • Muller, E.,. L. M. Hilty, R. Widmer, M. Schluep, and M. Faulstich. 2014. “Modeling Metal Stocks and Flows: a Review of Dynamic Material Flow Analysis Methods.” Environmental Science & Technology 48: 2102–2113. doi:10.1021/es403506a.
  • Nowack, B. 2017. “Evaluation of Environmental Exposure Models for Engineered Nanomaterials in a Regulatory Context.” NanoImpact 8: 38–47. doi:10.1016/j.impact.2017.06.005.
  • Nowack, B., M. Baalousha, N. Bornhöft, Q. Chaudhry, G. Cornelis, J. Cotterill, A. Gondikas., et al. 2015. “Progress towards the Validation of Modeled Environmental Concentrations of Engineered Nanomaterials by Analytical Measurements.” Environmental Science: Nano 2: 421–428. doi:10.1039/C5EN00100E.
  • Oomen, A. G., E. A. Bleeker, P. M. Bos, F. Van Broekhuizen, S. Gottardo, M. Groenewold, D. Hristozov., et al. 2015. “Grouping and Read-Across Approaches for Risk Assessment of Nanomaterials.” International Journal of Environmental Research and Public Health 12 (10):13415–13434. doi:10.3390/ijerph121013415.
  • Sahu, R. K., S. S. Hiremath, P. V. Manivannan, and M. Singaperumal. 2014. “An Innovative Approach for Generation of Aluminium Nanoparticles Using Micro Electrical Discharge Machining.” Procedia Materials Science 5: 1205–1213. doi:10.1016/j.mspro.2014.07.424.
  • Semenzin, E.,. E. Lanzellotto, D. Hristozov, A. Critto, A. Zabeo, E. Giubilato, and A. Marcomini. 2015. “Species Sensitivity Weighted Distribution for Ecological Risk Assessment of Engineered Nanomaterials: the n-TiO2 Case Study.” Environmental Toxicology and Chemistry 34 (11):2644–2659. doi:10.1002/etc.3103.
  • Shi, H.,. R. Magaye, V. Castranova, and J. Zhao. 2013. “Titanium Dioxide Nanoparticles: a Review of Current Toxicological data.” Particle and Fibre Toxicology 10: 15.
  • Song, R., Y. Qin, S. Suh, and A. A. Keller. 2017. “Dynamic Model for the Stocks and Release Flows of Engineered Nanomaterials.” Environmental Science & Technology 51: 12424–12433. doi:10.1021/acs.est.7b01907.
  • Stanley, J. K., Coleman, J. G. Weiss, C. A. Steevens. J. R., and J. A. 2010. “Sediment Toxicity and Bioaccumulation of Nano and Micron-sized Aluminum Oxide.” Environmental Toxicology and Chemistry 29 (2):422–429. doi:10.1002/etc.52.
  • Steinbach, C., N. Bohmer, H. F. Krug, D. Kühnel, K. Nau, F. Paul, S. Reithel, and C. Marquardt. 2017. “DaNa 2.0 - verlässliche Informationen Zur Sicherheit Von Marktüblichen Nanomaterialien.” Chemie Ingenieur Technik 89 (3):232–238. doi:10.1002/cite.201600074.
  • Sun, T. Y., N. A. Bornhoft, K. Hungerbuhler, and B. Nowack. 2016. “Dynamic Probabilistic Modeling of Environmental Emissions of Engineered Nanomaterials.” Environmental Science & Technology 50: 4701–4711. doi:10.1021/acs.est.5b05828.
  • Sun, T. Y., F. Gottschalk, K. Hungerbuhler, and B. Nowack. 2014. “Comprehensive Probabilistic Modelling of Environmental Emissions of Engineered Nanomaterials.” Environmental Pollution 185: 69–76. doi:10.1016/j.envpol.2013.10.004.
  • Sun, T. Y., D. M. Mitrano, N. A. Bornhoft, M. Scheringer, K. Hungerbuhler, and B. Nowack. 2017. “Envisioning Nano Release Dynamics in a Changing World: Using Dynamic Probabilistic Modeling to Assess Future Environmental Emissions of Engineered Nanomaterials.” Environmental Science & Technology 51: 2854–2863. doi:10.1021/acs.est.6b05702.
  • Trueba, M., and S. P. Trasatti. 2005. “γ-Alumina as a Support for Catalysts: A Review of Fundamental Aspects.” European Journal of Inorganic Chemistry 2005 (17):3393–3403. doi:10.1002/ejic.200500348.
  • Walser, T., R. M. Bourqui, and C. Studer. 2017. “Combination of Life Cycle Assessment, risk Assessment and Human Biomonitoring to Improve Regulatory Decisions and Policy Making for Chemicals.” Environmental Impact Assessment Review 65: 156–163. doi:10.1016/j.eiar.2017.05.004.
  • Wang, J., and Y. Fan. 2014. “Lung Injury Induced by TiO2 Nanoparticles Depends on Their Structural Features: size, shape, crystal Phases, and Surface Coating.” International Journal of Molecular Sciences 15 (12):22258–22278. doi:10.3390/ijms151222258.
  • Wang, Y., A. Kalinina, T. Sun, and B. Nowack. 2016. “Probabilistic Modeling of the Flows and Environmental Risks of Nano-Silica.” Science of the Total Environment 545–546: 67–76. doi:10.1016/j.scitotenv.2015.12.100.
  • Wang, Y., and B. Nowack. 2018a. “Dynamic Probabilistic Material Flow Analysis of nano-SiO2, nano Iron Oxides, nano-CeO2, nano-Al2O3, and Quantum Dots in Seven European Regions.” Environmental Pollution 235: 589–601. doi:10.1016/j.envpol.2018.01.004.
  • Wang, Y., and B. Nowack. 2018b. “Environmental Risk Assessment of Engineered nano-SiO2, nano Iron Oxides, nano-CeO2, nano-Al2 O3, and Quantum Dots.” Environmental Toxicology and Chemistry 37 (5):1387–1395. doi:10.1002/etc.4080.
  • Warheit, D. B. 2018. “Hazard and Risk Assessment Strategies for Nanoparticle Exposures: how Far Have we Come in the past 10 years??” F1000Research 7: 376.
  • Wigger, H. 2017. Environmental release of and exposure to iron oxide and silver nanoparticles - prospective estimations based on product application scenarios. Wiesbaden, Germany, Springer Vieweg.
  • Wigger, H., S. Hackmann, T. Zimmermann, J. Koser, J. Thoming, and A. Von Gleich. 2015. “Influences of Use Activities and Waste Management on Environmental Releases of Engineered Nanomaterials.” Science of the Total Environment 535: 160–171. doi:10.1016/j.scitotenv.2015.02.042.
  • Wigger, H., D. Kawecki, B. Nowack, and V. Adam. Submitted. Systematic consideration of parameter uncertainty and variability in probabilistic species sensitivity distributions. Integrated Environmental Assessment and Managment.
  • Wigger, H., W. Wohlleben, and B. Nowack. 2018. “Redefining Environmental Nanomaterial Flows: consequences of the Regulatory Nanomaterial Definition on the Results of Environmental Exposure Models.” Environmental Science: Nano 5: 1372–1385. doi:10.1039/C8EN00137E.
  • Zhang, Q., J. Q. Huang, M. Q. Zhao, W. Z. Qian, and F. Wei. 2011. “Carbon Nanotube Mass Production: Principles and Processes.” ChemSusChem 4 (7):864–889.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.