185
Views
17
CrossRef citations to date
0
Altmetric
Articles

Risk assessment of heterogeneous TiO2-based engineered nanoparticles (NPs): a QSTR approach using simple periodic table based descriptors

, & ORCID Icon
Pages 701-716 | Received 25 Jan 2019, Accepted 07 Mar 2019, Published online: 02 Apr 2019

References

  • Altenburger, R., H. Walter, and M. Grote. 2004. “What Contributes to the Combined Effect of a Complex Mixture?” Environmental Science and Technology 38 (23): 6353–6362. doi:10.1021/es049528k.
  • Ames, B. N., M. K. Shigenaga, and T. M. Hagen. 1993. “Oxidants, Antioxidants, and the Degenerative Diseases of Aging.” Proceedings of the National Academy of Sciences of the United States of America 90 (17): 7915–7922. https://doi.org/10.1073/pnas.90.17.7915.
  • Artiles, M. S., C. S. Rout, and T. S. Fisher. 2011. “Graphene-Based Hybrid Materials and Devices for Biosensing.” Advanced Drug Delivery Reviews 63 (14–15): 1352–1360. doi:10.1016/j.addr.2011.07.005.
  • Benigni, R., and A. Giuliani. 2003. “Putting the Predictive Toxicology Challenge into Perspective: Reflections on the Results.” Bioinformatics 19 (10): 1194–1200. doi:10.1093/bioinformatics/btg099.
  • Bilberg, K., K. B. Døving, K. Beedholm, and E. Baatrup. 2011. “Silver Nanoparticles Disrupt Olfaction in Crucian Carp (Carassius Carassius) and Eurasian Perch (Perca Fluviatilis).” Aquatic Toxicolgy 104 (1–2): 145–152. doi:10.1016/j.aquatox.2011.04.010.
  • Burello, E., A. Worth. 2012. “Development and evaluation of structure–reactivity models for predicting the in vitro oxidative stress of metal oxide nanoparticles.” Towards Efficient Designing of Safe Nanomaterials: Innovative Merge of Computational Approaches and Experimental Techniques Cambridge, United Kingdom: Royal Society of Chemistry: 257–283.
  • Cattaneo, A. G., Gornati, R. E. Sabbioni, M. Chiriva, ‐Internati, E. Cobos, M. R. Jenkins, and G. Bernardini. 2010. “Nanotechnology and Human Health: risks and Benefits.” Journal of Applied Toxicology: Jat 30 (8): 730–744. doi:10.1002/jat.1609.
  • Cheng, X., W. Zhang, Y. Ji, J. Meng, H. Guo, J. Liu, X. Wu, and H. Xu. 2013. “Revealing Silver Cytotoxicity Using Au Nanorods/Ag Shell Nanostructures: disrupting Cell Membrane and Causing Apoptosis through Oxidative Damage.” RSC Advances 3 (7): 2296–2305. doi:10.1039/c2ra23131j.
  • Chin, W. W. 1998. “The Partial Least Squares Approach to Structural Equation Modeling.” Modern Methods for Business Research 295 (2): 295–336.
  • Chirico, N., and P. Gramatica. 2011. “Real External Predictivity of QSAR Models: How to Evaluate It? Comparison of Different Validation Criteria and Proposal of Using the Concordance Correlation Coefficient.” Journal of Chemical Information and Modeling 51 (9): 2320–2335. doi:10.1021/ci200211n.
  • Cho, M., H. Chung, W. Choi, and J. Yoon. 2004. “Linear Correlation between Inactivation of E. coli and OH Radical Concentration in TiO2 Photocatalytic Disinfection.” Water Research 38 (4): 1069–1077. doi:10.1016/j.watres.2003.10.029.
  • Concu, R., V. V. Kleandrova, A. Speck-Planche, and M. N. D. S. Cordeiro. 2017. “Probing the Toxicity of Nanoparticles: A Unified in Silico Machine Learning Model Based on Perturbation Theory.” Nanotoxicology 11 (7): 891–906. doi:10.1080/17435390.2017.1379567.
  • De, P., S. Kar, K. Roy, and J. Leszczynski. 2018. “Second Generation Periodic Table-Based Descriptors to Encode Toxicity of Metal Oxide Nanoparticles to Multiple Species: QSTR Modeling for Exploration of Toxicity Mechanisms.” Environmental Science: Nano 5 (11): 2742–2760. doi:10.1039/C8EN00809D.
  • Drake, P. L., and K. J. Hazelwood. 2005. “Exposure-Related Health Effects of Silver and Silver Compounds: A Review.” The Annals of Occupational Hygiene 49 (7): 575–585. doi:10.1093/annhyg/mei019.
  • Dreher, K. L. 2004. “Health and Environmental Impact of Nanotechnology: Toxicological Assessment of Manufactured Nanoparticles”. Toxicology Sciences 77 (1): 3–5. doi:10.1093/toxsci/kfh041.
  • ECHA 2012. Experts Workshop on Read-Across Assessment Organised by ECHA with the active support from Cefic-LRI (October 3, 2012). Accessed on December 2018. http://cefic-lri.org/wp-content/uploads/2014/03/ECHA-Cefic-LRI-Read-across-Workshop-Report_171211-FINAL.pdf
  • European, C. 2006. “Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), Establishing a European Chemicals Agency, Amending Directive 1999/45/EC and Repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as Well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC.” Official Journal European Union 396: 374–375. https://eur-lex.europa.eu/eli/reg/2006/1907/2014-04-10
  • Foldbjerg, R., D. A. Dang, and H. Autrup. 2011. “Cytotoxicity and Genotoxicity of Silver Nanoparticles in the Human Lung Cancer Cell Line, A549.” Archives of Toxicology 85 (7): 743–750. doi:10.1007/s00204-010-0545-5.
  • Gajewicz, A., B. Rasulev, T. C. Dinadayalane, P. Urbaszek, T. Puzyn, D. Leszczynska, and J. Leszczynski. 2012. “Advancing Risk Assessment of Engineered Nanomaterials: Application of Computational Approaches.” Advanced Drug Delivery Reviews 64 (15): 1663–1693. doi:10.1016/j.addr.2012.05.014.
  • Handy, R. D., R. Owen, and E. Valsami-Jones. 2008. “The Ecotoxicology of Nanoparticles and Nanomaterials: current Status, Knowledge Gaps, Challenges, and Future Needs.” Ecotoxicology 17 (5): 315–325. doi:10.1007/s10646-008-0206-0.
  • Handy, R. D., F. Von der Kammer, J. R. Lead, M. Hassellöv, R. Owen, and M. Crane. 2008. “The Ecotoxicology and Chemistry of Manufactured Nanoparticles.” Ecotoxicology 17 (4): 287–314. doi:10.1007/s10646-008-0199-8.
  • Hansen, S. F., A. Maynard, A. Baun, and J. A. Tickner. 2008. “Late Lessons from Early Warnings for Nanotechnology.” Nature Nanotechnology 3 (8): 444. doi:10.1038/nnano.2008.198.
  • Hewlett, P. S., and C. F. Wilkinson. 1967. “Quantitative Aspects of the Synergism between Carbaryl and Some 1, 3‐Benzodioxole (Methylenedioxyphenyl) Compounds in Houseflie.” Journal of the Science of Food and Agriculture 18 (7): 279–282. doi:10.1002/jsfa.2740180703.
  • Highsmith, J. 2014. “Nanoparticles in Biotechnology, Drug Development and Drug Delivery.” Report BIO113B. Wellesley, MA: BCC Research. Available online: http://bccresearch.com/marketresearch/biotechnology/nanoparticles-biotechnology-drug-development-drug-delivery-report-bio113b.html
  • Islam, N., and K. Miyazaki. 2010. “An Empirical Analysis of Nanotechnology Research Domains.” Technovation 30 (4): 229–237. doi:10.1016/j.technovation.2009.10.002.
  • Jiang, X., R. Foldbjerg, T. Miclaus, L. Wang, R. Singh, Y. Hayashi, D. Sutherland, C. Chen, H. Autrup, and C. Beer. 2013. “Multi-Platform Genotoxicity Analysis of Silver Nanoparticles in the Model Cell Line CHO-K1.” Toxicology Letters 222 (1): 55–63. doi:10.1016/j.toxlet.2013.07.011.
  • Kang, S., M. Pinault, L. D. Pfefferle, and M. Elimelech. 2007. “Single-Walled Carbon Nanotubes Exhibit Strong Antimicrobial Activity.” Langmuir 23 (17): 8670–8673. doi:10.1021/la701067r.
  • Kar, S., A. Gajewicz, T. Puzyn, K. Roy, and J. Leszczynski. 2014. “Periodic Table-Based Descriptors to Encode Cytotoxicity Profile of Metal Oxide Nanoparticles: A Mechanistic QSTR Approach.” Ecotoxicology and Environmental Safety.107: 162–169. doi:10.1016/j.ecoenv.2014.05.026.
  • Kar, S., A. Gajewicz, K. Roy, J. Leszczynski, and T. Puzyn. 2016. “Extrapolating between Toxicity Endpoints of Metal Oxide Nanoparticles: Predicting Toxicity to Escherichia coli and Human Keratinocyte Cell Line (HaCaT) with Nano-QTTR.” Ecotoxicology and Environmental Safety 126: 238–244. doi:10.1016/j.ecoenv.2015.12.033.
  • Kim, Y.-J., S. I. Yang, and J.-C. Ryu. 2010. “Cytotoxicity and Genotoxicity of Nano-Silver in Mammalian Cell Lines.” Molecular & Cellular Toxicology 6 (2): 119–125. doi:10.1007/s13273-010-0018-1.
  • Kittler, S., C. Greulich, J. Diendorf, M. KöLler, and M. Epple. 2010. “Toxicity of Silver Nanoparticles Increases during Storage Because of Slow Dissolution under Release of Silver Ions.” Chemistry of Materials 22 (16): 4548–4554. doi:10.1021/cm100023p.
  • Kleandrova, V. V., F. Luan, H. González-Díaz, J. M. Ruso, A. Melo, A. Speck-Planche, and M. N. L D. S. Cordeiro. 2014. “Computational Ecotoxicology: Simultaneous Prediction of Ecotoxic Effects of Nanoparticles under Different Experimental Conditions.” Environment International 73: 288–294. doi:10.1016/j.envint.2014.08.009.
  • Kleandrova, V. V., F. Luan, H. González-Díaz, J. M. Ruso, A. Speck-Planche, and M. N. D. S. Cordeiro. 2014. “Computational Tool for Risk Assessment of Nanomaterials: Novel QSTR-Perturbation Model for Simultaneous Prediction of Ecotoxicity and Cytotoxicity of Uncoated and Coated Nanoparticles under Multiple Experimental Conditions.” Environmental Science and Technology 48 (24): 14686–14694. doi:10.1021/es503861x.
  • Koppenol, W. H. 2001. “The Haber-Weiss cycle-70 years later.” REDOX Report: Communications in Free Radical Research 6 (4): 229–234. doi:10.1179/135100001101536373.
  • Lin, W., Y. W. Huang, X. D. Zhou, and Y. Ma. 2006a. "In vitro toxicity of silica nanoparticles in human lung cancer cells.” Toxicology and Applied Pharmacology 217 (3): 252–259. doi:10.1016/j.taap.2006.10.004.
  • Lin, W., Y-W Huang, X.-D. Zhou, and Y. Ma. 2006b. “Toxicity of Cerium Oxide Nanoparticles in Human Lung Cancer Cells.” International Journal of Toxicology 25 (6): 451–457. doi:10.1080/10915810600959543.
  • Lovrić, J., S. J. Cho, F. M. Winnik, and D. Maysinger. 2005. “Unmodified Cadmium Telluride Quantum Dots Induce Reactive Oxygen Species Formation Leading to Multiple Organelle Damage and Cell Death.” Chemistry and Biology 12 (11): 1227–1234. doi:10.1016/j.chembiol.2005.09.008.
  • Luan, F., V. V. Kleandrova, H. González-Díaz, J. M. Ruso, A. Melo, A. Speck-Planche, and M. N. D. S. Cordeiro. 2014. “Computer-Aided Nanotoxicology: assessing Cytotoxicity of Nanoparticles under Diverse Experimental Conditions by Using a Novel QSTR-Perturbation Approach.” Nanoscale 6 (18): 10623–10630. doi:10.1039/C4NR01285B.
  • Lubick, N. 2008. Nanosilver Toxicity: ions, Nanoparticles- or Both? Environ Sci Technol 42(23), 8617–8617. doi: 10.1021/es8026314.
  • Melagraki, G., and A. Afantitis. 2014. “Enalos InSilicoNano Platform: An Online Decision Support Tool for the Design and Virtual Screening of Nanoparticles.” RSC Advances 4 (92): 50713–50725. doi:10.1039/C4RA07756C.
  • Mikolajczyk, A., A. Gajewicz, E. Mulkiewicz, B. Rasulev, M. Marchelek, M. Diak, S. Hirano, A. Zaleska-Medynska, and T. Puzyn. 2018. “Nano-QSAR Modeling for Ecosafe Design of Heterogeneous TiO 2-Based Nano-Photocatalysts.” Environmental Science: Nano 5 (5): 1150–1160. doi:10.1039/C8EN00085A.
  • Mikolajczyk, A., A. Malankowska, G. Nowaczyk, A. Gajewicz, S. Hirano, S. Jurga, A. Zaleska-Medynska, and T. Puzyn. 2016. “Combined Experimental and Computational Approach to Developing Efficient Photocatalysts Based on Au/Pd–TiO 2 Nanoparticles.” Environmental Science: Nano 3 (6): 1425–1435. doi:10.1039/C6EN00232C.
  • Morris, J., J. Willis, D. De Martinis, B. Hansen, H. Laursen, J. R. Sintes, P. Kearns, and M. Gonzalez. 2011. “Science Policy Considerations for Responsible Nanotechnology Decisions.” Nature Nanotechnology 6 (2): 73. doi:10.1038/nnano.2010.191.
  • National Research Council. 2002. Small Wonders, Endless Frontiers: A Review of the National Nanotechnology Initiative. Washington, DC: National Academies Press.
  • Neal, A. L. 2008. “What Can Be Inferred from Bacterium–Nanoparticle Interactions about the Potential Consequences of Environmental Exposure to Nanoparticles.” Ecotoxicology 17 (5):362. doi:10.1007/s10646-008-0217-x.
  • OECD 2014. Guidance on Grouping of Chemicals, Series on Testing and Assessment. No. 194 2nd ed. Organisation of Economic Cooperation and Development: Paris, France.
  • Ojha, P. K., I. Mitra, R. N. Das, and K. Roy. 2011. “Further Exploring rm2 Metrics for Validation of QSPR Models.” Chemometrics and Intelligent Laboratory Systems 107 (1): 194–205. doi:10.1016/j.chemolab.2011.03.011.
  • Ozben, T. 2007. “Oxidative Stress and Apoptosis: impact on Cancer Therapy.” Journal of Pharmaceutical Sciences 96 (9): 2181–2196. doi:10.1002/jps.20874.
  • Plackett, R. L., and P. S. Hewlett. 1967. “A Comparison of Two Approaches to the Construction of Models for Quantal Responses to Mixtures of Drugs.” Biometrics 23 (1): 27–44. doi:10.2307/2528279.
  • Puzyn, T., A. Gajewicz, D. Leszczynska, and J. Leszczynski. 2010. Nanomaterials–the Next Great Challenge for QSAR Modelers. Recent Advances in QSAR Studies. Dordrecht: Springer; 383–409.
  • Puzyn, T., J. Leszczynski, and M. T. Cronin. 2010. Recent Advances in QSAR Studies: methods and Applications. The Netherlands: Springer Science & Business Media.
  • Puzyn, T., B. Rasulev, A. Gajewicz, X. Hu, T. P. Dasari, A. Michalkova, H.-M. Hwang, A. Toropov, D. Leszczynska, and J. Leszczynski. 2011. “Using nano-QSAR to Predict the Cytotoxicity of Metal Oxide Nanoparticles.” Nature Nanotechnology 6 (3): 175. doi:10.1038/nnano.2011.10.
  • RCC-NI 2011. Regulatory Cooperation Council Nanotechnology Initiative Work Element 4 Final Report Assessment of Nanomaterial Uses in Canada and the US. http://www.ec.gc.ca/scitech/default.asp?lang=En&n=6A2D63E5-1&xsl=privateArticles2,viewfull&po=08C45DB6.
  • Roy, K., and P. Ambure. 2016. “The ‘Double Cross-Validation’ Software Tool for MLR QSAR Model Development.” Chemometrics and Intelligent Laboratory Systems 159: 108–126. doi:10.1016/j.chemolab.2016.10.009.
  • Roy, K., and R. N. Das. 2013. “QSTR with Extended Topochemical Atom (ETA) Indices. 16. Development of Predictive Classification and Regression Models for Toxicity of Ionic Liquids towards Daphnia Magna.” Journal of hazardous materials 254: 166–178. doi:10.1016/j.jhazmat.2013.03.023.
  • Roy, K., R. N. Das, P. Ambure, and R. B. Aher. 2016. “Be Aware of Error Measures. Further Studies on Validation of Predictive QSAR Models.” Chemometrics and Intelligent Laboratory Systems 152: 18–33. doi:10.1016/j.chemolab.2016.01.008.
  • Roy, K., S. Kar, and P. Ambure. 2015. “On a Simple Approach for Determining Applicability Domain of QSAR Models.” Chemometrics and Intelligent Laboratory Systems 145: 22–29. doi:10.1016/j.chemolab.2015.04.013.
  • Sawai, J., H. Kojima, H. Igarashi, A. Hashimoto, S. Shoji, T. Sawaki, A. Hakoda, E. Kawada, T. Kokugan, and M. Shimizu. 2000. “Antibacterial Characteristics of Magnesium Oxide Powder.” World Journal of Microbiology and Biotechnology 16 (2): 187–194. doi:10.1023/A:1008916209784.
  • Serpone, N., and A. V. Emeline. 2012. Semiconductor Photocatalysisî—¸ Past, Present, and Future Outlook. J Phys Chem Lett 3(5), 673–677. doi: 10.1021/jz300071j.
  • Speck-Planche, A., V. V. Kleandrova, F. Luan, and M. N. Ds Cordeiro. 2015. “Computational Modeling in Nanomedicine: prediction of Multiple Antibacterial Profiles of Nanoparticles Using a Quantitative Structure- Activity Relationship Perturbation Model.” Nanomedicine 10 (2): 193–204. doi:10.2217/nnm.14.96.
  • Todeschini, R., and V. Consonni. 2009. Molecular Descriptors for Chemoinformatics, I and II. Weinheim: John Wiley & Sons.
  • Tropsha, A. 2003. In: Burger's Medicinal Chemistry and Drug Discovery, edited by Donald J. Abraham, John Wiley & Sons, NY, Chapter 2. https://doi.org/10.1002/0471266949.bmc002.pub2 Recent advances in development, validation, and exploitation of QSAR models.
  • Tropsha, A. 2010. “Best Practices for QSAR Model Development, Validation, and Exploitation.” Molecular Informatics 29 (6–7): 476–488. doi:10.1002/minf.201000061.
  • Umetrics, M. 2013. User Guide to SIMCA. Malmö(Sweden): MKS Umetrics AB.
  • Walker, J. D., M. Enache, and J. C. Dearden. 2003. “Quantitative Cationic‐Activity Relationships for Predicting Toxicity of Metals.” Environmental Toxicology and Chemistry 22 (8): 1916–1935. doi:10.1897/02-568.
  • Wang, D., Y. Gao, Z. Lin, Z. Yao, and W. Zhang. 2014. “The Joint Effects on Photobacterium phosphoreum of Metal Oxide Nanoparticles and Their Most Likely Coexisting Chemicals in the Environment.” Aquatic Toxicolgy 154: 200–206. doi:10.1016/j.aquatox.2014.05.023.
  • Xia, T., M. Kovochich, J. Brant, M. Hotze, J. Sempf, T. Oberley, C. Sioutas, J. I. Yeh, M. R. Wiesner, and A. E. Nel. 2006. “Comparison of the Abilities of Ambient and Manufactured Nanoparticles to Induce Cellular Toxicity according to an Oxidative Stress Paradigm.” Nano Letters 6 (8): 1794–1807. doi:10.1021/nl061025k.
  • Xu, S., and N. Nirmalakhandan. 1998. “Use of QSAR Models in Predicting Joint Effects in Multi-Component Mixtures of Organic Chemicals.” Water Research 32 (8): 2391–2399. doi:10.1016/S0043-1354(98)00006-2.
  • Zhang, L., P-J Zhou, F. Yang, and Z-D Wang. 2007. “Computer-Based QSARs for Predicting Mixture Toxicity of Benzene and Its Derivatives.” Chemosphere 67 (2): 396–401. doi:10.1016/j.chemosphere.2006.09.018.
  • Zhang, H., Z. Ji, T. Xia, H. Meng, C. Low-Kam, R. Liu, S. Pokhrel, S. Lin, X. Wang, Y. Liao, M. Wang, L. Li, R. Rallo, R. Damoiseaux, D. Telesca, L. Madler, Y. Cohen, J. I. Zink, A. E. Nel. 2012. “Use of Metal Oxide Nanoparticle Band Gap to Develop a Predictive Paradigm for Acute Pulmonary Inflammation based on Oxidative Stress.” ACS Nano 6: 4349–4368. doi:10.1021/nn3010087.
  • Zhu, H., T. M. Martin, L. Ye, A. Sedykh, D. M. Young, and A. Tropsha. 2009. “Quantitative Structure − Activity Relationship Modeling of Rat Acute Toxicity by Oral Exposure.” Chemical Research in Toxicology 22 (12): 1913–1921. doi:10.1021/tx900189p.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.