727
Views
50
CrossRef citations to date
0
Altmetric
Review Article

Integration of inflammation, fibrosis, and cancer induced by carbon nanotubes

&
Pages 1244-1274 | Received 10 May 2019, Accepted 31 Jul 2019, Published online: 19 Sep 2019

References

  • Abdalla, S., F. Al-Marzouki, AA. Al-Ghamdi, and A. Abdel-Daiem. 2015. “Different Technical Applications of Carbon Nanotubes.” Nanoscale Research Letters 10 (1): 358. doi:10.1186/s11671-015-1056-3.
  • Aiso, S., K. Yamazaki, Y. Umeda, M. Asakura, T. Kasai, M. Takaya, T. Toya, et al. 2010. “Pulmonary Toxicity of Intratracheally Instilled Multiwall Carbon Nanotubes in Male Fischer 344 rats.” Industrial Health 48 (6): 783–795. doi:10.2486/indhealth.ms1129.
  • Akhurst, R. J., and A. Hata. 2012. “Targeting the TGFβ Signalling Pathway in Disease.” Nature Reviews Drug Discovery 11 (10): 790–811. doi:10.1038/nrd3810.
  • Alarifi, S., and D. Ali. 2015. “Mechanisms of Multi-Walled Carbon Nanotubes-Induced Oxidative Stress and Genotoxicity in Mouse Fibroblast Cells.” International Journal of Toxicology 34 (3): 258–265. doi:10.1177/1091581815584799.
  • Arnoldussen, Y. J., V. Skaug, M. Aleksandersen, E. Ropstad, K. H. Anmarkrud, E. Einarsdottir, F. Chin-Lin, et al. 2018. “Inflammation in the Pleural Cavity following Injection of Multi-Walled Carbon Nanotubes Is Dependent on Their Characteristics and the Presence of IL-1 Genes.” Nanotoxicology 12 (6): 522–538. doi:10.1080/17435390.2018.1465139.
  • Bagot, C. N., and R. Arya. 2008. “Virchow and His Triad: A Question of Attribution.” British Journal of Haematology 143 (2): 180–190. doi:10.1111/j.1365-2141.2008.07323.x.
  • Balkwill, F., and A. Mantovani. 2001. “Inflammation and Cancer: Back to Virchow?” Lancet (London, England) 357 (9255): 539–545. doi:10.1016/S0140-6736(00)04046-0.
  • Balkwill, F. R., and A. Mantovani. 2012. “Cancer-Related Inflammation: Common Themes and Therapeutic Opportunities.” Seminars in Cancer Biology 22 (1): 33–40. doi:10.1016/j.semcancer.2011.12.005.
  • Berman, J. S., D. Serlin, X. Li, G. Whitley, J. Hayes, D. C. Rishikof, D. A. Ricupero, et al. 2004. “Altered Bleomycin-Induced Lung Fibrosis in Osteopontin-Deficient Mice.” American Journal of Physiology, Lung Cellular and Molecular Physiology 286 (6): L1311–1318. doi:10.1152/ajplung.00394.2003.
  • Bonnans, C., J. Chou, and Z. Werb. 2014. “Remodelling the Extracellular Matrix in Development and Disease.” Nature Reviews Molecular Cell Biology 15 (12): 786–801. doi:10.1038/nrm3904.
  • Borthwick, L. A., T. A. Wynn, and A. J. Fisher. 2013. “Cytokine Mediated Tissue Fibrosis.” Biochimica et Biophysica Acta (Bba) – Molecular Basis of Disease 1832 (7): 1049–1060. doi:10.1016/j.bbadis.2012.09.014.
  • Borthwick, L. A. 2016. “The IL-1 Cytokine Family and Its Role in Inflammation and Fibrosis in the Lung.” Seminars in Immunopathology 38 (4): 517–534. doi:10.1007/s00281-016-0559-z.
  • Buckley, C. D., D. Pilling, J. M. Lord, A. N. Akbar, D. Scheel-Toellner, and M. Salmon. 2001. “Fibroblasts Regulate the Switch from Acute Resolving to Chronic Persistent Inflammation.” Trends Immunol 22 (4): 199–204.
  • Carswell, E. A., L. J. Old, R. L. Kassel, S. Green, N. Fiore, and B. Williamson. 1975. “An Endotoxin-Induced Serum Factor That Causes Necrosis of Tumors.” Proceedings of the National Academy of Sciences of the United States of America 72 (9): 3666–3670. doi:10.1073/pnas.72.9.3666.
  • Chang, C. C., M. L. Tsai, H. C. Huang, C. Y. Chen, and S. X. Dai. 2012. “Epithelial-Mesenchymal Transition Contributes to SWCNT-Induced Pulmonary Fibrosis.” Nanotoxicology 6 (6): 600–610. doi:10.3109/17435390.2011.594913.
  • Chernova, T., F. A. Murphy, S. Galavotti, X.-M. Sun, I. R. Powley, S. Grosso, A. Schinwald, et al. 2017. “Long-Fiber Carbon Nanotubes Replicate Asbestos-Induced Mesothelioma with Disruption of the Tumor Suppressor Gene Cdkn2a (Ink4a/Arf).” Current Biology 27 (21): 3302–3314.
  • Christ, M., N. L. McCartney-Francis, A. B. Kulkarni, J. M. Ward, D. E. Mizel, C. L. Mackall, R. E. Gress, et al. 1994. “Immune Dysregulation in TGF-Beta 1-Deficient Mice.” Journal of Immunology 153 (5): 1936–1946.
  • Churg, A., and S. Vedal. 1994. “Fiber Burden and Patterns of Asbestos-Related Disease in Workers with Heavy Mixed Amosite and Chrysotile Exposure.” American Journal of Respiratory and Critical Care Medicine 150 (3): 663–669. doi:10.1164/ajrccm.150.3.8087335.
  • Churg, A. 1991. “Analysis of Lung Asbestos Content.” British Journal of Industrial Medicine 48 (10): 649–652. doi:10.1136/oem.48.10.649.
  • Coll, R. C., A. A. B. Robertson, J. J. Chae, S. C. Higgins, R. Muñoz-Planillo, M. C. Inserra, I. Vetter, et al. 2015. “A Small-Molecule Inhibitor of the NLRP3 Inflammasome for the Treatment of Inflammatory Diseases.” Nature Medicine 21 (3): 248–255. doi:10.1038/nm.3806.
  • Coussens, L. M., and Z. Werb. 2002. “Inflammation and Cancer.” Nature 420 (6917): 860–867. doi:10.1038/nature01322.
  • Coussens, L. M., L. Zitvogel, and A. K. Palucka. 2013. “Neutralizing Tumor-Promoting Chronic Inflammation: A Magic Bullet?” Science (New York, N.Y.) 339 (6117): 286–291. doi:10.1126/science.1232227.
  • Cox, T. R., and J. T. Erler. 2016. “Fibrosis and Cancer: Partners in Crime or Opposing Forces?” Trends in Cancer 2 (6): 279–282. doi:10.1016/j.trecan.2016.05.004.
  • Davis, J. M., and H. A. Cowie. 1990. “The Relationship between Fibrosis and Cancer in Experimental Animals Exposed to Asbestos and Other Fibers.” Environmental Health Perspectives 88: 305–309. doi:10.1289/ehp.9088305.
  • De Volder, M. F., S. H. Tawfick, R. H. Baughman, and A. J. Hart. 2013. “Carbon Nanotubes: Present and Future Commercial Applications.” Science (New York, N.Y.) 339 (6119): 535–539. doi:10.1126/science.1222453.
  • Doll, R. 1955. “Mortality from Lung Cancer in Asbestos Workers.” British Journal of Industrial Medicine 12 (2): 81–86. doi:10.1136/oem.12.2.81.
  • Donaldson, K., R. Aitken, L. Tran, V. Stone, R. Duffin, G. Forrest, and A. Alexander. 2006. “Carbon Nanotubes: A Review of Their Properties in Relation to Pulmonary Toxicology and Workplace Safety.” Toxicological Sciences: An Official Journal of the Society of Toxicology 92 (1): 5–22. doi:10.1093/toxsci/kfj130.
  • Donaldson, K., F. A. Murphy, R. Duffin, and C. A. Poland. 2010. “Asbestos, Carbon Nanotubes and the Pleural Mesothelium: A Review of the Hypothesis regarding the Role of Long Fibre Retention in the Parietal Pleura, Inflammation and Mesothelioma.” Particle and Fibre Toxicology 7: 5. doi:10.1186/1743-8977-7-5.
  • Donaldson, K., and C. A. Poland. 2012. “Inhaled Nanoparticles and Lung Cancer – What we Can Learn from Conventional Particle Toxicology.” Swiss Medical Weekly 142: W 13547. doi:10.4414/smw.2012.13547.
  • Dong, J., and Q. Ma. 2015. “Advances in Mechanisms and Signaling Pathways of Carbon Nanotube toxicity.” Nanotoxicology 9 (5): 658–676. doi:10.3109/17435390.2015.1009187.
  • Dong, J., and Q. Ma. 2016a. “In Vivo Activation of a T Helper 2-Driven Innate Immune Response in Lung Fibrosis Induced by Multi-Walled Carbon Nanotubes.” Archives of Toxicology 90 (9): 2231–2248. doi:10.1007/s00204-016-1711-1.
  • Dong, J., and Q. Ma. 2016b. “Myofibroblasts and Lung Fibrosis Induced by Carbon Nanotube Exposure.” Particle and Fibre Toxicology 13 (1): 60. doi:10.1186/s12989-016-0172-2.
  • Dong, J., and Q. Ma. 2016c. “Suppression of Basal and Carbon Nanotube-Induced Oxidative Stress, Inflammation and Fibrosis in Mouse Lungs by Nrf2.” Nanotoxicology 10 (6): 699–709. doi:10.3109/17435390.2015.1110758.
  • Dong, J., and Q. Ma. 2017a. “Osteopontin Enhances Multi-Walled Carbon Nanotube-Triggered Lung Fibrosis by Promoting TGF-beta1 Activation and Myofibroblast Differentiation.” Particle and Fibre Toxicology 14 (1): 18. doi:10.1186/s12989-017-0198-0.
  • Dong, J., and Q. Ma. 2017b. “TIMP1 Promotes Multi-Walled Carbon Nanotube-Induced Lung Fibrosis by Stimulating Fibroblast Activation and Proliferation.” Nanotoxicology 11 (1): 41–51. doi:10.1080/17435390.2016.1262919.
  • Dong, J., and Q. Ma. 2018a. “Macrophage Polarization and Activation at the Interface of Multi-Walled Carbon Nanotube-Induced Pulmonary Inflammation and Fibrosis.” Nanotoxicology 12 (2): 153–168. doi:10.1080/17435390.2018.1425501.
  • Dong, J., and Q. Ma. 2018b. “Type 2 Immune Mechanisms in Carbon Nanotube-Induced Lung Fibrosis.” Frontiers in Immunology 9: 1120. doi:10.3389/fimmu.2018.01120.
  • Dong, J., D. W. Porter, L. A. Batteli, M. G. Wolfarth, D. L. Richardson, and Q. Ma. 2015. “Pathologic and Molecular Profiling of rapid-onset fibrosis and inflammation induced by multi-walled carbon nanotubes.” Archives of Toxicology 89 (4): 621–633. doi:10.1007/s00204-014-1428-y.
  • Drexler, K. E. 1992. Nanosystems: Molecular Machinery, Manufacturing, and Computation. New York: John Wiley and Sons.
  • Duffield, J. S., M. Lupher, V. J. Thannickal, and T. A. Wynn. 2013. “Host Responses in Tissue Repair and Fibrosis.” Annual Review of Pathology 8: 241–276. doi:10.1146/annurev-pathol-020712-163930.
  • Duke, K. S., and J. C. Bonner. 2018. “Mechanisms of Carbon Nanotube-Induced Pulmonary Fibrosis: A Physicochemical Characteristic Perspective.” Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology 10 (3): e1498. doi:10.1002/wnan.1498.
  • Dvorak, H. F. 1986. “Tumors: Wounds That Do Not Heal. Similarities between Tumor Stroma Generation and Wound Healing.” New England Journal of Medicine 315: 1650–1659. doi:10.1056/NEJM198612253152606.
  • Eiro, N., and F. J. Vizoso. 2012. “Inflammation and Cancer.” World Journal of Gastrointestinal Surgery 4 (3): 62–72. doi:10.4240/wjgs.v4.i3.62.
  • Ema, M., M. Gamo, and K. Honda. 2016. “A Review of Toxicity Studies of Single-Walled Carbon Nanotubes in Laboratory Animals.” Regulatory Toxicology and Pharmacology: RTP 74: 42–63. doi:10.1016/j.yrtph.2015.11.015.
  • Eming, SA., TA. Wynn, and P. Martin. 2017. “Inflammation and Metabolism in Tissue Repair and Regeneration.” Science (New York, N.Y.) 356 (6342): 1026–1030. doi:10.1126/science.aam7928.
  • Fatkhutdinova, L. M., T. O. Khaliullin, O. L. Vasil'yeva, R. R. Zalyalov, I. S. G. Mustafin, E. R. Kisin, M. E. Birch, N. Yanamala, and A. A. Shvedova. 2016. “Fibrosis Biomarkers in Workers Exposed to MWCNTs.” Toxicology and Applied Pharmacology 299: 125–131. doi:10.1016/j.taap.2016.02.016.
  • Finlay, G. A., V. J. Thannickal, B. L. Fanburg, and K. E. Paulson. 2000. “Transforming Growth Factor-Beta 1-Induced Activation of the ERK Pathway/Activator Protein-1 in Human Lung Fibroblasts Requires the Autocrine Induction of Basic Fibroblast Growth Factor.” The Journal of Biological Chemistry 275 (36): 27650–27656. doi:10.1074/jbc.M000893200.
  • Flavell, S. J., T. Z. Hou, S. Lax, A. D. Filer, M. Salmon, and C. D. Buckley. 2008. “Fibroblasts as Novel Therapeutic Targets in Chronic Inflammation.” British Journal of Pharmacology 153 (S1): S241–S246. doi:10.1038/sj.bjp.0707487.
  • Friedl, P., and K. Wolf. 2010. “Plasticity of Cell Migration: A Multiscale Tuning Model.” The Journal of Cell Biology 188 (1): 11–19. doi:10.1083/jcb.200909003.
  • Friedmann-Morvinski, D., R. Narasimamurthy, Y. Xia, C. Myskiw, Y. Soda, and I. M. Verma. 2016. “Targeting NF-κB in glioblastoma: A therapeutic approach.” Science Advances 2 (1): e1501292. doi:10.1126/sciadv.1501292.
  • Fujita, K., M. Fukuda, S. Endoh, J. Maru, H. Kato, A. Nakamura, N. Shinohara, K. Uchino, and K. Honda. 2016. “Pulmonary and Pleural Inflammation after Intratracheal Instillation of Short Single-Walled and Multi-Walled Carbon Nanotubes.” Toxicology Letters 257: 23–37. doi:10.1016/j.toxlet.2016.05.025.
  • Gieseck R. L., 3rd, M. S. Wilson, and T. A. Wynn. 2018. “Type 2 Immunity in Tissue Repair and Fibrosis.” Nature Reviews Immunology 18 (1): 62–76. doi:10.1038/nri.2017.90.
  • Greenberg, M. I., J. Waksman, and J. Curtis. 2007. “Silicosis: A Review.” Disease-a-Month 53 (8): 394–416. doi:10.1016/j.disamonth.2007.09.020.
  • Grivennikov, S. I., F. R. Greten, and M. Karin. 2010. “Immunity, Inflammation, and Cancer.” Cell 140 (6): 883–899. doi:10.1016/j.cell.2010.01.025.
  • Grosse, Y., D. Loomis, K. Z. Guyton, B. Lauby-Secretan, F. El Ghissassi, V. Bouvard, L. Benbrahim-Tallaa, et al. 2014. “Carcinogenicity of Fluoro-Edenite, Silicon Carbide Fibres and Whiskers, and Carbon Nanotubes.” The Lancet Oncology 15 (13): 1427–1428. doi:10.1016/S1470-2045(14)71109-X.
  • Hanahan, D., and R. A. Weinberg. 2011. “Hallmarks of Cancer: The Next Generation.” Cell 144 (5): 646–674. doi:10.1016/j.cell.2011.02.013.
  • Heino, J., V. M. Kahari, S. Jaakkola, and J. Peltonen. 1989. “Collagen in the Extracellular Matrix of Cultured Scleroderma Skin Fibroblasts: Changes Related to Ascorbic Acid-Treatment.” Matrix 9 (1): 34–39.
  • Hinz, B., S. H. Phan, V. J. Thannickal, M. Prunotto, A. Desmoulière, J. Varga, O. De Wever, M. Mareel, and G. Gabbiani. 2012. “Recent Developments in Myofibroblast Biology: Paradigms for Connective Tissue Remodeling.” The American Journal of Pathology 180 (4): 1340–1355. doi:10.1016/j.ajpath.2012.02.004.
  • Honda, K., M. Naya, H. Takehara, H. Kataura, K. Fujita, and M. Ema. 2017. “A 104-Week Pulmonary Toxicity Assessment of Long and Short Single-Wall Carbon Nanotubes after a Single Intratracheal Instillation in Rats.” Inhalation Toxicology 29 (11): 471–482. doi:10.1080/08958378.2017.1394930.
  • Hornung, V., F. Bauernfeind, A. Halle, E. O. Samstad, H. Kono, K. L. Rock, K. A. Fitzgerald, and E. Latz. 2008. “Silica Crystals and Aluminum Salts Activate the NALP3 Inflammasome through Phagosomal Destabilization.” Nature Immunology 9 (8): 847–856. doi:10.1038/ni.1631.
  • Huaux, F., V. d'Ursel de Bousies, M.-A. Parent, M. Orsi, F. Uwambayinema, R. Devosse, S. Ibouraadaten, et al. 2016. “Mesothelioma Response to Carbon Nanotubes Is Associated with an Early and Selective Accumulation of Immunosuppressive Monocytic Cells.” Particle and Fibre Toxicology 13 (1): 46 doi:10.1186/s12989-016-0158-0.
  • Huizar, I., A. Malur, Y. A. Midgette, C. Kukoly, P. Chen, P. C. Ke, R. Podila, et al. 2011. “Novel Murine Model of Chronic Granulomatous Lung Inflammation Elicited by Carbon nanotubes.” American Journal of Respiratory Cell and Molecular Biology 45 (4): 858–866. doi:10.1165/rcmb.2010-0401OC.
  • Johnston, H. J., G. R. Hutchison, F. M. Christensen, S Peters, S. Hankin, K. Aschberger, and V. Stone. 2010. “A Critical Review of the Biological Mechanisms Underlying the in Vivo and in Vitro Toxicity of Carbon Nanotubes: The Contribution of Physico-Chemical Characteristics.” Nanotoxicology 4 (2): 207–246. doi:10.3109/17435390903569639.
  • Kalluri, R. 2016. “The Biology and Function of Fibroblasts in Cancer.” Nature Reviews Cancer 16 (9): 582–598. doi:10.1038/nrc.2016.73.
  • Kane, AB., RH. Hurt, and H. Gao. 2018. “The Asbestos-Carbon Nanotube Analogy: An Update.” Toxicology and Applied Pharmacology 361: 68–80. doi:10.1016/j.taap.2018.06.027.
  • Kasai, T., Y. Umeda, M. Ohnishi, H. Kondo, T. Takeuchi, S. Aiso, T. Nishizawa, M. Matsumoto, and S. Fukushima. 2015. “Thirteen-Week Study of Toxicity of Fiber-like Multi-Walled Carbon Nanotubes with Whole-Body Inhalation Exposure in Rats.” Nanotoxicology 9 (4): 413–422. doi:10.3109/17435390.2014.933903.
  • Kasai, T., Y. Umeda, M. Ohnishi, T. Mine, H. Kondo, T. Takeuchi, M. Matsumoto, and S. Fukushima. 2016. “Lung Carcinogenicity of Inhaled Multi-Walled Carbon Nanotube in Rats.” Particle and Fibre Toxicology 13 (1): 53. doi:10.1186/s12989-016-0164-2.
  • Katzenstein, A. L., and J. L. Myers. 1998. “Idiopathic Pulmonary Fibrosis: Clinical Relevance of Pathologic Classification.” American Journal of Respiratory and Critical Care Medicine 157 (4 Pt 1): 1301–1315. doi:10.1164/ajrccm.157.4.9707039.
  • Kaufmann, S. H. 2008. “Immunology's Foundation: The 100-Year Anniversary of the Nobel Prize to Paul Ehrlich and Elie Metchnikoff.” Nature Immunology 9 (7): 705–712. doi:10.1038/ni0708-705.
  • Kendall, R. T., and C. A. Feghali-Bostwick. 2014. “Fibroblasts in Fibrosis: Novel Roles and Mediators.” Frontiers in Pharmacology 5: 123. doi:10.3389/fphar.2014.00123.
  • Khaliullin, T. O., E. R. Kisin, A. R. Murray, N. Yanamala, M. R. Shurin, D. W. Gutkin, L. M. Fatkhutdinova, V. E. Kagan, and A. A. Shvedova. 2017. “Mediation of the Single-Walled Carbon Nanotubes Induced Pulmonary Fibrogenic Response by Osteopontin and TGF-β1.” Experimental Lung Research 43 (8): 311–326. doi:10.1080/01902148.2017.1377783.
  • Kim, J. E., S. Lee, A. Y. Lee, H. W. Seo, C. Chae, and M. H. Cho. 2015. “Intratracheal Exposure to Multi-Walled Carbon Nanotubes Induces a Nonalcoholic Steatohepatitis-like Phenotype in C57BL/6J Mice.” Nanotoxicology 9 (5): 613–623. doi:10.3109/17435390.2014.963186.
  • Kuempel, E. D., M.-C. Jaurand, P. Møller, Y. Morimoto, N. Kobayashi, K. E. Pinkerton, L. M. Sargent, et al. 2017. “Evaluating the Mechanistic Evidence and Key Data Gaps in Assessing the Potential Carcinogenicity of Carbon Nanotubes and Nanofibers in Humans.” Critical Reviews in Toxicology 47 (1): 1–58. doi:10.1080/10408444.2016.1206061.
  • Kulkarni, A. B., and S. Karlsson. 1993. “Transforming Growth Factor-Beta 1 Knockout Mice. A Mutation in One Cytokine Gene Causes a Dramatic Inflammatory Disease.” American Journal of Pathology 143 (1): 3–9.
  • Labib, S., A. Williams, C. L. Yauk, J. K. Nikota, H. Wallin, U. Vogel, and S. Halappanavar. 2016. “Nano-Risk Science: Application of Toxicogenomics in an Adverse Outcome Pathway Framework for Risk Assessment of Multi-Walled Carbon Nanotubes.” Particle and Fibre Toxicology 13 (1): 15. doi:10.1186/s12989-016-0125-9.
  • Lam, C. W., J. T. James, R. McCluskey, and R. L. Hunter. 2004. “Pulmonary Toxicity of Single-Wall Carbon Nanotubes in Mice 7 and 90 Days after Intratracheal Instillation.” Toxicological Sciences: An Official Journal of the Society of Toxicology 77 (1): 126–134. doi:10.1093/toxsci/kfg243.
  • Leask, A., and D. J. Abraham. 2004. “TGF-Beta Signaling and the Fibrotic Response.” FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 18 (7): 816–827. doi:10.1096/fj.03-1273rev.
  • Liou, S. H., C. S. Tsai, D. Pelclova, M. K. Schubauer-Berigan, and P. A. Schulte. 2015. “Assessing the First Wave of Epidemiological Studies of Nanomaterial Workers.” Journal of Nanoparticle Research: An Interdisciplinary Forum for Nanoscale Science and Technology 17: 413. doi:10.1007/s11051-015-3219-7.
  • Lo, C. M., H. B. Wang, M. Dembo, and Y. L. Wang. 2000. “Cell Movement Is Guided by the Rigidity of the Substrate.” Biophysical Journal 79 (1): 144–152. doi:10.1016/S0006-3495(00)76279-5.
  • Lohcharoenkal, W., L. Wang, T. A. Stueckle, C. Z. Dinu, V. Castranova, Y. Liu, and Y. Rojanasakul. 2013. “Chronic Exposure to Carbon Nanotubes Induces Invasion of Human Mesothelial Cells through Matrix Metalloproteinase-2.” American Chemical Society Nano 7 (9): 7711–7723. doi:10.1021/nn402241b.
  • Lu, P., V. M. Weaver, and Z. Werb. 2012. “The Extracellular Matrix: A Dynamic Niche in Cancer Progression.” The Journal of Cell Biology 196 (4): 395–406. doi:10.1083/jcb.201102147.
  • Luanpitpong, S., L. Wang, and Y. Rojanasakul. 2014. “The Effects of Carbon Nanotubes on Lung and Dermal Cellular Behaviors.” Nanomedicine (London, England) 9 (6): 895–912. doi:10.2217/nnm.14.42.
  • Lucas, A. 2012. “Atherosclerosis, Cancer, Wound Healing, and Inflammation – Shared or Parallel Evolution.” International Journal of Cardiovascular Research 01 (01): 1–2. doi:10.4172/2324-8602.1000e101.
  • Lupher, ML., Jr., and WM. Gallatin. 2006. “Regulation of Fibrosis by the Immune System.” Advances in Immunology 89: 245–288. doi:10.1016/S0065-2776(05)89006-6.
  • Mallat, Z., A. Gojova, C. Marchiol-Fournigault, B. Esposito, C. Kamaté, R. Merval, D. Fradelizi, and A. Tedgui. 2001. “Inhibition of Transforming Growth Factor-Beta Signaling Accelerates Atherosclerosis and Induces an Unstable Plaque Phenotype in Mice.” Circulation Research 89 (10): 930–934. doi:10.1161/hh2201.099415.
  • Mantovani, A., P. Allavena, A. Sica, and F. Balkwill. 2008. “Cancer-Related Inflammation.” Nature 454 (7203): 436–444. doi:10.1038/nature07205.
  • Matsuzaki, H., M. Maeda, S. Lee, Y. Nishimura, N. Kumagai-Takei, H. Hayashi, S. Yamamoto, et al. 2012. “Asbestos-Induced Cellular and Molecular Alteration of Immunocompetent Cells and Their Relationship with Chronic Inflammation and Carcinogenesis.” Journal of Biomedicine and Biotechnology 2012: 492608. doi:10.1155/2012/492608.
  • McDonald, J. C., B. Armstrong, B. Case, D. Doell, W. T. McCaughey, A. D. McDonald, and P. Sébastien. 1989. “Mesothelioma and Asbestos Fiber Type. Evidence from Lung Tissue analyses.” Cancer 63 (8): 1544–1547. doi:10.1002/1097-0142(19890415)63:8andlt;1544::aid-cncr2820630815andgt;3.0.co;2-g.
  • Meneghin, A., and C. M. Hogaboam. 2007. “Infectious Disease, the Innate Immune Response, and Fibrosis.” The Journal of Clinical Investigation 117 (3): 530–538. doi:10.1172/JCI30595.
  • Mercer, R. R., J. F. Scabilloni, A. F. Hubbs, L. A. Battelli, W. McKinney, S. Friend, M. G. Wolfarth, et al. 2013. “Distribution and Fibrotic Response following Inhalation Exposure to Multi-Walled Carbon Nanotubes.” Particle and Fibre Toxicology 10: 33. doi:10.1186/1743-8977-10-33.
  • Mezzano, S. A., M. A. Droguett, M. E. Burgos, L. G. Ardiles, C. A. Aros, I. Caorsi, and J. Egido. 2000. “Overexpression of Chemokines, Fibrogenic Cytokines, and Myofibroblasts in Human Membranous nephropathy.” Kidney International 57 (1): 147–158. doi:10.1046/j.1523-1755.2000.00830.x.
  • Miserocchi, G., G. Sancini, F. Mantegazza, and G. Chiappino. 2008. “Translocation Pathways for Inhaled Asbestos Fibers.” Environmental Health: A Global Access Science Source 7: 4. doi:10.1186/1476-069X-7-4.
  • Møller, P., D. V. Christophersen, D. M. Jensen, A. Kermanizadeh, M. Roursgaard, N. R. Jacobsen, J. G. Hemmingsen, et al. 2014. “Role of Oxidative Stress in Carbon nanotube-generated health effects.” Archives of Toxicology 88 (11): 1939–1964. doi:10.1007/s00204-014-1356-x.
  • Mossman, B. T., J. Bignon, M. Corn, A. Seaton, and J. B. Gee. 1990. “Asbestos: Scientific Developments and Implications for Public Policy.” Science (New York, N.Y.) 247 (4940): 294–301. doi:10.1126/science.2153315.
  • Mossman, B. T., and A. Churg. 1998. “Mechanisms in the Pathogenesis of Asbestosis and Silicosis.” American Journal of Respiratory and Critical Care Medicine 157 (5 Pt 1): 1666–1680. doi:10.1164/ajrccm.157.5.9707141.
  • Muller, J., M. Delos, N. Panin, V. Rabolli, F. Huaux, and D. Lison. 2009. “Absence of Carcinogenic Response to Multiwall Carbon Nanotubes in a 2-Year Bioassay in the Peritoneal Cavity of the Rat.” Toxicological Sciences 110 (2): 442–448. doi:10.1093/toxsci/kfp100.
  • Muller, J., F. Huaux, N. Moreau, P. Misson, J.-F. Heilier, M. Delos, M. Arras, et al. 2005. “Respiratory Toxicity of Multi-Wall Carbon Nanotubes.” Toxicology and Applied Pharmacology 207 (3): 221–231. doi:10.1016/j.taap.2005.01.008.
  • Murphy, F. A., C. A. Poland, R. Duffin, K. T. Al-Jamal, H. Ali-Boucetta, A. Nunes, F. Byrne, et al. 2011. “Length-Dependent Retention of Carbon Nanotubes in the Pleural Space of Mice Initiates Sustained Inflammation and Progressive Fibrosis on the Parietal Pleura.” The American Journal of Pathology 178 (6): 2587–2600. doi:10.1016/j.ajpath.2011.02.040.
  • Murray, P. J., and T. A. Wynn. 2011. “Protective and Pathogenic Functions of Macrophage Subsets.” Nature Reviews Immunology 11 (11): 723–737. doi:10.1038/nri3073.
  • Nagai, H., Y. Okazaki, S. H. Chew, N. Misawa, Y. Miyata, H. Shinohara, and S. Toyokuni. 2013. “Intraperitoneal Administration of Tangled Multiwalled Carbon Nanotubes of 15 nm in Diameter Does Not Induce Mesothelial Carcinogenesis in Rats.” Pathology International 63 (9): 457–462. doi:10.1111/pin.12093.
  • Nagai, H., Y. Okazaki, S. H. Chew, N. Misawa, Y. Yamashita, S. Akatsuka, T. Ishihara, et al. 2011. “Diameter and Rigidity of Multiwalled Carbon Nanotubes Are Critical Factors in Mesothelial Injury and Carcinogenesis.” Proceedings of the National Academy of Sciences of the United States of America 108 (49): E1330–1338. doi:10.1073/pnas.1110013108.
  • Neglia, J. P., S. C. FitzSimmons, P. Maisonneuve, M. H. Schöni, F. Schöni-Affolter, M. Corey, and A. B. Lowenfels. 1995. “The Risk of Cancer among Patients with Cystic Fibrosis. Cystic Fibrosis and Cancer Study Group.” New England Journal of Medicine 332 (8): 494–499. doi:10.1056/NEJM199502233320803.
  • Nikota, J., A. Banville, L. R. Goodwin, D. Wu, A. Williams, C. L. Yauk, H. Wallin, U. Vogel, and S. Halappanavar. 2017. “Stat-6 Signaling Pathway and Not Interleukin-1 Mediates Multi-Walled Carbon Nanotube-Induced Lung Fibrosis in Mice: Insights from an Adverse Outcome Pathway Framework.” Particle and Fibre Toxicology 14 (1): 37. doi:10.1186/s12989-017-0218-0.
  • NSF. 2011. “Nanotechnology Research Directions for Societal Needs in 2020: Retrospective and Outlook Summary. National Science Foundation.” In Science Policy Reports, edited by M. Roco, C. Mirkin, M. Hersan eds. New York: Springer.
  • Ohlund, D., E. Elyada, and D. Tuveson. 2014. “Fibroblast Heterogeneity in the Cancer Wound.” The Journal of Experimental Medicine 211 (8): 1503–1523. doi:10.1084/jem.20140692.
  • O'Regan, A. 2003. “The Role of Osteopontin in Lung Disease.” Cytokine Growth Factor Rev 14 (6): 479–488.
  • Osmond-McLeod, M. J., C. A. Poland, F. Murphy, L. Waddington, H. Morris, S. C. Hawkins, S. Clark, et al. 2011. “Durability and Inflammogenic Impact of Carbon Nanotubes Compared with Asbestos Fibres.” Particle and Fibre Toxicology 8: 15. doi:10.1186/1743-8977-8-15.
  • Otsuki, T., H. Matsuzaki, S. Lee, N. Kumagai-Takei, S. Yamamoto, T. Hatayama, K. Yoshitome, and Y. Nishimura. 2016. “Environmental Factors and Human Health: Fibrous and Particulate Substance-Induced Immunological Disorders and Construction of a Health-Promoting Living Environment.” Environmental Health and Preventive Medicine 21 (2): 71–81. doi:10.1007/s12199-015-0499-6.
  • Pacurari, M., X. J. Yin, J. Zhao, M. Ding, S. S. Leonard, D. Schwegler-Berry, B. S. Ducatman, et al. 2008. “Raw Single-Wall Carbon Nanotubes Induce Oxidative Stress and Activate MAPKs, AP-1, NF-kappaB, and Akt in Normal and Malignant Human Mesothelial Cells.” Environmental Health Perspectives 116 (9): 1211–1217. doi:10.1289/ehp.10924.
  • Park, E.-J., W.-S. Cho, J. Jeong, J. Yi, K. Choi, and K. Park. 2009. “Pro-inflammatory and potential allergic responses resulting from B cell activation in mice treated with multi-walled carbon nanotubes by intratracheal instillation.” Toxicology 259 (3): 113–121. doi:10.1016/j.tox.2009.02.009.
  • Park, E.-J., J. Roh, S.-N. Kim, M.-S. Kang, Y-A. Han, Y. Kim, J. T. Hong, and K. Choi. 2011. “A Single Intratracheal Instillation of Single-Walled Carbon Nanotubes Induced Early Lung Fibrosis and Subchronic Tissue Damage in Mice.” Archives of Toxicology 85 (9): 1121–1131. doi:10.1007/s00204-011-0655-8.
  • Phan, S. H., K. Zhang, H. Y. Zhang, and M. Gharaee-Kermani. 1999. “The Myofibroblast as an Inflammatory Cell in Pulmonary Fibrosis.” Ergebnisse Der Pathologie [Current Topics in Pathology] 93: 173–182.
  • Poland, C. A., R. Duffin, I. Kinloch, A. Maynard, W. A. H. Wallace, A. Seaton, V. Stone, et al. 2008. “Carbon Nanotubes Introduced into the Abdominal Cavity of Mice Show Asbestos-like Pathogenicity in a Pilot Study.” Nature Nanotechnology 3 (7): 423–428. doi:10.1038/nnano.2008.111
  • Porter, D. W., A. F. Hubbs, B. T. Chen, W. McKinney, R. R. Mercer, M. G. Wolfarth, L. Battelli, et al. 2013. “Acute Pulmonary Dose-Responses to Inhaled Multi-Walled Carbon Nanotubes.” Nanotoxicology 7 (7): 1179–1194. doi:10.3109/17435390.2012.719649.
  • Porter, D. W., A. F. Hubbs, R. R. Mercer, N. Wu, M. G. Wolfarth, K. Sriram, S. Leonard, et al. 2010. “Mouse Pulmonary Dose- and Time Course-Responses Induced by Exposure to Multi-Walled Carbon Nanotubes.” Toxicology 269 (2–3): 136–147. doi:10.1016/j.tox.2009.10.017.
  • Pourgholamhossein, F., R. Rasooli, M. Pournamdari, L. Pourgholi, M. Samareh-Fekri, M. Ghazi-Khansari, M. Iranpour, et al. 2018. “Pirfenidone Protects against Paraquat-Induced Lung Injury and Fibrosis in Mice by Modulation of Inflammation, Oxidative Stress, and Gene Expression.” Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 112: 39–46. doi:10.1016/j.fct.2017.12.034.
  • Principi, E., R. Girardello, A. Bruno, I. Manni, E. Gini, A. Pagani, A. Grimaldi, et al. 2016. “Systemic Distribution of Single-Walled Carbon Nanotubes in a Novel Model: Alteration of Biochemical Parameters, Metabolic Functions, Liver Accumulation, and Inflammation in Vivo.” International Journal of Nanomedicine 11: 4299–4316. doi:10.2147/IJN.S109950.
  • Reddy, A. R., Y. N. Reddy, D. R. Krishna, and V. Himabindu. 2012. “Pulmonary Toxicity Assessment of Multiwalled Carbon Nanotubes in Rats following Intratracheal Instillation.” Environmental Toxicology 27 (4): 211–219. doi:10.1002/tox.20632.
  • Ribatti, D. 2017. “A Revisited Concept: Contact Inhibition of Growth. From Cell Biology to Malignancy.” Experimental Cell Research 359 (1): 17–19. doi:10.1016/j.yexcr.2017.06.012.
  • Ringelhan, M., J. A. McKeating, and U. Protzer. 2017. “Viral Hepatitis and Liver Cancer.” Philosophical Transactions of the Royal Society of London B: Biological Sciences 372 (1732): 20160274
  • Rittinghausen, S., A. Hackbarth, O. Creutzenberg, H. Ernst, U. Heinrich, A. Leonhardt, and D. Schaudien. 2014. “The Carcinogenic Effect of Various Multi-Walled Carbon Nanotubes (MWCNTs) after Intraperitoneal Injection in Rats.” Particle and Fibre Toxicology 11: 59. doi:10.1186/s12989-014-0059-z.
  • Rittling, S. R., and R. Singh. 2015. “Osteopontin in Immune-Mediated Diseases.” Journal of Dental Research 94 (12): 1638–1645. doi:10.1177/0022034515605270.
  • Rogers, A. J., J. Leigh, G. Berry, D. A. Ferguson, H. B. Mulder, and M. Ackad. 1991. “Relationship Between Lung Asbestos Fiber Type and Concentration and Relative Risk of Mesothelioma. A Case-Control Study.” Cancer 67 (7): 1912–1920. doi:10.1002/1097-0142(19910401)67:7andlt;1912::aid-cncr2820670716andgt;3.0.co;2-y.
  • Roggli, V. L., P. C. Pratt, and A. R. Brody. 1986. “Asbestos Content of Lung Tissue in Asbestos Associated Diseases: A Study of 110 Cases.” British Journal of Industrial Medicine 43 (1): 18–28. doi:10.1136/oem.43.1.18.
  • Roggli, V. L., and R. T. Vollmer. 2008. “Twenty-Five Years of Fiber Analysis: What Have we Learned?” Human Pathology 39 (3): 307–315. doi:10.1016/j.humpath.2007.07.005.
  • Roggli, V. L. 1990. “Human Disease Consequences of Fiber Exposures: A Review of Human Lung Pathology and Fiber Burden Data.” Environmental Health Perspectives 88: 295–303. doi:10.1289/ehp.9088295.
  • Rom, W. N., W. D. Travis, and A. R. Brody. 1991. “Cellular and Molecular Basis of the Asbestos-Related Diseases.” The American Review of Respiratory Disease 143 (2): 408–422. doi:10.1164/ajrccm/143.2.408.
  • Rothen-Rutishauser, B., D. M. Brown, M. Piallier-Boyles, I. A. Kinloch, A. H. Windle, P. Gehr, and V. Stone. 2010. “Relating the Physicochemical Characteristics and Dispersion of Multiwalled Carbon Nanotubes in Different Suspension Media to Their Oxidative Reactivity in Vitro and Inflammation in Vivo.” Nanotoxicology 4 (3): 331–342. doi:10.3109/17435390.2010.489161.
  • Rybinski, B., J. Franco-Barraza, and E. Cukierman. 2014. “The Wound Healing, Chronic Fibrosis, and Cancer Progression Triad.” Physiological Genomics 46 (7): 223–244. doi:10.1152/physiolgenomics.00158.2013.
  • Rydman, E. M., M. Ilves, E. Vanhala, M. Vippola, M. Lehto, P. A. S. Kinaret, L. Pylkkänen, et al. 2015. “A Single Aspiration of Rod-like Carbon Nanotubes Induces Asbestos-like Pulmonary Inflammation Mediated in Part by the IL-1 Receptor.” Toxicological Sciences: An Official Journal of the Society of Toxicology 147 (1): 140–155. doi:10.1093/toxsci/kfv112.
  • Ryman-Rasmussen, J. P., E. W. Tewksbury, O. R. Moss, M. F. Cesta, B. A. Wong, and J. C. Bonner. 2009. “Inhaled Multiwalled Carbon Nanotubes Potentiate Airway Fibrosis in Murine Allergic Asthma.” American Journal of Respiratory Cell and Molecular Biology 40 (3): 349–358. doi:10.1165/rcmb.2008-0276OC.
  • Sakamoto, Y., D. Nakae, N. Fukumori, K. Tayama, A. Maekawa, K. Imai, A. Hirose, et al. 2009. “Induction of Mesothelioma by a Single Intrascrotal Administration of Multi-Wall Carbon Nanotube in Intact Male Fischer 344 Rats.” The Journal of Toxicological Sciences 34 (1): 65–76.
  • Sambo, P., S. S. Baroni, M. Luchetti, P. Paroncini, S. Dusi, G. Orlandini, and A. Gabrielli. 2001. “Oxidative Stress in Scleroderma: Maintenance of Scleroderma Fibroblast Phenotype by the Constitutive up-Regulation of Reactive Oxygen Species Generation through the NADPH Oxidase Complex Pathway.” Arthritis and Rheumatism 44 (11): 2653–2664. doi:10.1002/1529-0131(200111)44:11andlt;2653::aid-art445andgt;3.0.co;2-1.
  • Sargent, L. M., D. W. Porter, L. M. Staska, A. F. Hubbs, D. T. Lowry, L. Battelli, K. J. Siegrist, et al. 2014. “Promotion of Lung Adenocarcinoma following Inhalation Exposure to Multi-Walled Carbon Nanotubes.” Particle and Fibre Toxicology 11: 3. doi:10.1186/1743-8977-11-3.
  • Schafer, M., and S. Werner. 2008. “Cancer as an Overhealing Wound: An Old Hypothesis revisited.” Nature Reviews. Molecular Cell Biology 9 (8): 628–638. doi:10.1038/nrm2455.
  • Schulte, P. A., E. D. Kuempel, R. D. Zumwalde, C. L. Geraci, M. K. Schubauer-Berigan, V. Castranova, L. Hodson, et al. 2012. “Focused Actions to Protect Carbon Nanotube Workers.” American Journal of Industrial Medicine 55 (5): 395–411. doi:10.1002/ajim.22028.
  • Shalapour, S., and M. Karin. 2015. “Immunity, Inflammation, and Cancer: An Eternal Fight between Good and Evil.” The Journal of Clinical Investigation 125 (9): 3347–3355. doi:10.1172/JCI80007.
  • Sharma, P., N. K. Mehra, K. Jain, and N. K. Jain. 2016. “Biomedical Applications of Carbon Nanotubes: A Critical Review.” Current Drug Delivery 13 (6): 796–817.
  • Shraiman, B. I. 2005. “Mechanical Feedback as a Possible Regulator of Tissue Growth.” Proceedings of the National Academy of Sciences of the United States of America 102 (9): 3318–3323. doi:10.1073/pnas.0404782102.
  • Shvedova, A. A., E. Kisin, A. R. Murray, V. J. Johnson, O. Gorelik, S. Arepalli, A. F. Hubbs, et al. 2008. “Inhalation vs. Aspiration of Single-Walled Carbon Nanotubes in C57BL/6 Mice: Inflammation, Fibrosis, Oxidative Stress, and Mutagenesis.” The American Journal of Physiology-Lung Cellular and Molecular Physiology 295 (4): L552–565.
  • Shvedova, A. A., E. R. Kisin, R. Mercer, A. R. Murray, V. J. Johnson, A. I. Potapovich, Y. Y. Tyurina, et al. 2005. “Unusual Inflammatory and Fibrogenic Pulmonary Responses to Single-Walled Carbon Nanotubes in Mice.” American Journal of Physiology Lung Cellular and Molecular Physiology 289 (5): L698–708. doi:10.1152/ajplung.00084.2005.
  • Shvedova, A. A., N. Yanamala, E. R. Kisin, A. V. Tkach, A. R. Murray, A. Hubbs, M. M. Chirila, et al. 2014. “Long-Term Effects of Carbon Containing Engineered Nanomaterials and Asbestos in the Lung: One Year Postexposure Comparisons.” American Journal of Physiology Lung Cellular and Molecular Physiology 306 (2): L170–182.
  • Sinis, S. I., C. Hatzoglou, K. I. Gourgoulianis, and S. G. Zarogiannis. 2018. “Carbon Nanotubes and Other Engineered Nanoparticles Induced Pathophysiology on Mesothelial Cells and Mesothelial Membranes.” Frontiers in Physiology 9: 295. doi:10.3389/fphys.2018.00295.
  • Sugiura, H., X. Liu, T. Kobayashi, S. Togo, R. F. Ertl, S. Kawasaki, K. Kamio, et al. 2006. “Reactive Nitrogen Species Augment fibroblast-mediated collagen gel contraction, mediator production, and chemotaxis.” American Journal of Respiratory Cell and Molecular Biology 34 (5): 592–599. doi:10.1165/rcmb.2005-0339OC.
  • Suzui, M., M. Futakuchi, K. Fukamachi, T. Numano, M. Abdelgied, S. Takahashi, M. Ohnishi, et al. 2016. “Multiwalled Carbon Nanotubes Intratracheally Instilled into the Rat Lung Induce Development of Pleural Malignant Mesothelioma and Lung Tumors.” Cancer Science 107 (7): 924–935. doi:10.1111/cas.12954.
  • Takagi, A., A. Hirose, M. Futakuchi, H. Tsuda, and J. Kanno. 2012. “Dose-Dependent Mesothelioma Induction by Intraperitoneal Administration of Multi-Wall Carbon Nanotubes in p53 Heterozygous Mice.” Cancer Science 103 (8): 1440–1444. doi:10.1111/j.1349-7006.2012.02318.x.
  • Takagi, A., A. Hirose, T. Nishimura, N. Fukumori, A. Ogata, N. Ohashi, S. Kitajima, and J. Kanno. 2008. “Induction of Mesothelioma in p53+/- Mouse by Intraperitoneal Application of Multi-Wall Carbon Nanotube.” The Journal of Toxicological Sciences 33 (1): 105–116. doi:10.2131/jts.33.105.
  • Takahashi, F., K. Takahashi, T. Okazaki, K. Maeda, H. Ienaga, M. Maeda, S. Kon, T. Uede, and Y. Fukuchi. 2001. “Role of Osteopontin in the Pathogenesis of Bleomycin-Induced Pulmonary Fibrosis.” American Journal of Respiratory Cell and Molecular Biology 24 (3): 264–271. doi:10.1165/ajrcmb.24.3.4293.
  • Taylor, A. J., C. D. McClure, K. A. Shipkowski, E. A. Thompson, S. Hussain, S. Garantziotis, G. N. Parsons, and J. C. Bonner. 2014. “Atomic Layer Deposition Coating of Carbon Nanotubes with Aluminum Oxide Alters Pro-Fibrogenic Cytokine Expression by Human Mononuclear Phagocytes in Vitro and Reduces Lung Fibrosis in Mice in Vivo.” PLOS One 9 (9): e106870. doi:10.1371/journal.pone.0106870.
  • Thannickal, V. J., K. D. Aldweib, and B. L. Fanburg. 1998a. “Tyrosine Phosphorylation Regulates H2O2 Production in Lung Fibroblasts Stimulated by Transforming Growth Factor Beta1.” Journal of Biological Chemistry 273 (36): 23611–23615. doi:10.1074/jbc.273.36.23611.
  • Thannickal, V. J., K. D. Aldweib, T. Rajan, and B. L. Fanburg. 1998b. “Upregulated Expression of Fibroblast Growth Factor (FGF) Receptors by Transforming Growth Factor-beta1 (TGF-beta1) Mediates Enhanced Mitogenic Responses to FGFs in Cultured Human Lung Fibroblasts.” Biochemical and Biophysical Research Communications 251 (2): 437–441. doi:10.1006/bbrc.1998.9443.
  • Thannickal, V. J., and B. L. Fanburg. 1995. “Activation of an H2O2-Generating NADH Oxidase in Human Lung Fibroblasts by Transforming Growth Factor Beta 1.” Journal of Biological Chemistry 270 (51): 30334–30338. doi:10.1074/jbc.270.51.30334.
  • Thompson, E. A., B. C. Sayers, E. E. Glista-Baker, K. A. Shipkowski, M. D. Ihrie, K. S. Duke, A. J. Taylor, and J. C. Bonner. 2015. “Role of Signal Transducer and Activator of Transcription 1 in Murine Allergen-Induced Airway Remodeling and Exacerbation by Carbon Nanotubes.” American Journal of Respiratory Cell and Molecular Biology 53 (5): 625–636. doi:10.1165/rcmb.2014-0221OC.
  • Tomasek, J. J., G. Gabbiani, B. Hinz, C. Chaponnier, and R. A. Brown. 2002. “Myofibroblasts and Mechano-Regulation of Connective Tissue Remodelling.” Nature Reviews. Molecular Cell Biology 3 (5): 349–363. doi:10.1038/nrm809.
  • Toyokuni, S., L. I. Jiang, R. Kitaura, and H. Shinohara. 2015. “Minimal Inflammogenicity of Pristine Single-Wall Carbon Nanotubes.” Nagoya Journal of Medical Science 77 (1–2): 195–202.
  • Vietti, G., D. Lison, and S. van den Brule. 2016. “Mechanisms of Lung Fibrosis Induced by Carbon Nanotubes: Towards an Adverse Outcome Pathway (AOP).” Particle and Fibre Toxicology 13: 11. doi:10.1186/s12989-016-0123-y.
  • Virchow, R. 1863. Cellular pathology as based upon physiological and pathological histology. Philadelphia: J. B. Lippincott.
  • Vlaanderen, J., A. Pronk, N. Rothman, A. Hildesheim, D. Silverman, H. D. Hosgood, S. Spaan, et al. 2017. “A Cross-Sectional Study of Changes in Markers of Immunological Effects and Lung Health due to Exposure to Multi-Walled Carbon Nanotubes.” Nanotoxicology 11 (3): 395–404. doi:10.1080/17435390.2017.1308031.
  • Wagner, J. C., M. L. Newhouse, B. Corrin, C. E. Rossiter, and D. M. Griffiths. 1988. “Correlation Between Fibre Content of the Lung and Disease in East London Asbestos Factory Workers.” British Journal of Industrial Medicine 45 (5): 305–308. doi:10.1136/oem.45.5.305.
  • White, E. S., M. H. Lazar, and V. J. Thannickal. 2003. “Pathogenetic Mechanisms in Usual Interstitial Pneumonia/Idiopathic Pulmonary Fibrosis.” The Journal of Pathology 201 (3): 343–354. doi:10.1002/path.1446.
  • Wick, G., A. Backovic, E. Rabensteiner, N. Plank, C. Schwentner, and R. Sgonc. 2010. “The Immunology of Fibrosis: Innate and Adaptive Responses.” Trends in Immunology 31 (3): 110–119. doi:10.1016/j.it.2009.12.001.
  • Wu, J., T. Chitapanarux, Y. Chen, R. K. Soon, Jr., and H. F. Yee. Jr. 2013. “Intestinal Myofibroblasts Produce Nitric Oxide in Response to Combinatorial Cytokine Stimulation.” Journal of Cellular Physiology 228 (3): 572–580. doi:10.1002/jcp.24164.
  • Wynn, T. A., and T. R. Ramalingam. 2012. “Mechanisms of Fibrosis: Therapeutic Translation for Fibrotic Disease.” Nature Medicine 18 (7): 1028–1040. doi:10.1038/nm.2807.
  • Wynn, T. A. 2008. “Cellular and Molecular Mechanisms of Fibrosis.” The Journal of Pathology 214 (2): 199–210. doi:10.1002/path.2277.
  • Xia, Y., N. Yeddula, M. Leblanc, E. Ke, Y. Zhang, E. Oldfield, R. J. Shaw, and I. M. Verma. 2012. “Reduced Cell Proliferation by IKK2 Depletion in a Mouse Lung-Cancer Model.” Nature Cell Biology 14 (3): 257–265. doi:10.1038/ncb2428.
  • Xie, H., R. Wang, X. Tang, Y. Xiong, R. Xu, and X. Wu. 2012. “Paraquat-Induced Pulmonary Fibrosis Starts at an Early Stage of Inflammation in Rats.” Immunotherapy 4 (12): 1809–1815. doi:10.2217/imt.12.122.
  • Xu, J., D. B. Alexander, M. Futakuchi, T. Numano, K. Fukamachi, M. Suzui, T. Omori, J. Kanno, A. Hirose, H. Tsuda., et al. 2014. “Size- and Shape-Dependent Pleural Translocation, Deposition, Fibrogenesis, and Mesothelial Proliferation by Multiwalled Carbon Nanotubes.” Cancer Science 105 (7): 763–769. doi:10.1111/cas.12437.
  • Xu, J., M. Futakuchi, H. Shimizu, D. B. Alexander, K. Yanagihara, K. Fukamachi, M. Suzui, et al. 2012. “Multi-Walled Carbon Nanotubes Translocate into the Pleural Cavity and Induce Visceral Mesothelial Proliferation in Rats.” Cancer Science 103 (12): 2045–2050. doi:10.1111/cas.12005.
  • Yazdani, S., R. Bansal, and J. Prakash. 2017. “Drug Targeting to Myofibroblasts: Implications for Fibrosis and Cancer.” Advanced Drug Delivery Reviews 121: 101–116. doi:10.1016/j.addr.2017.07.010.
  • Zhang, K., M. D. Rekhter, D. Gordon, and S. H. Phan. 1994. “Myofibroblasts and Their Role in Lung Collagen Gene Expression during Pulmonary Fibrosis. A Combined Immunohistochemical and in Situ Hybridization Study.” American Journal of Pathology 145 (1): 114–125.
  • Zhang, Q., J. Q. Huang, W. Z. Qian, Y. Y. Zhang, and F. Wei. 2013. “The Road for Nanomaterials Industry: A Review of Carbon Nanotube Production, Post-Treatment, and Bulk Applications for Composites and Energy Storage.” Small (Weinheim an Der Bergstrasse, Germany) 9 (8): 1237–1265. doi:10.1002/smll.201203252.
  • Zhao, X., and R. Liu. 2012. “Recent Progress and Perspectives on the Toxicity of Carbon Nanotubes at Organism, Organ, Cell, and Biomacromolecule Levels.” Environment International 40: 244–255. doi:10.1016/j.envint.2011.12.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.