2,029
Views
14
CrossRef citations to date
0
Altmetric
Articles

Iron nanoparticle bio-interactions evaluated in Xenopus laevis embryos, a model for studying the safety of ingested nanoparticles

, , , , , , , & show all
Pages 196-213 | Received 26 Jul 2019, Accepted 22 Oct 2019, Published online: 13 Nov 2019

References

  • Acosta, E. 2009. “Bioavailability of Nanoparticles in Nutrient and Nutraceutical Delivery.” Current Opinion in Colloid & Interface Science 14(1): 3–15. doi:10.1016/j.cocis.2008.01.002.
  • Ansari, M. O., M. F. Ahmad, G. G. H. A. Shadab, and H. R. Siddique. 2018. “Superparamagnetic Iron Oxide Nanoparticles Based Cancer Theranostics: A Double Edge Sword to Fight against Cancer.” Journal of Drug Delivery Science and Technology 45: 177–183. doi:10.1016/j.jddst.2018.03.017.
  • Armenia, Ilaria, María Valeria Grazú Bonavia, Laura De Matteis, Pavlo Ivanchenko, Gianmario Martra, Rosalba Gornati, Jesus M. de la Fuente, and Giovanni Bernardini. 2019. “Enzyme Activation by Alternating Magnetic Field: Importance of the Bioconjugation Methodology.” Journal of Colloid and Interface Science 537: 615–628. doi:10.1016/j.jcis.2018.11.058.
  • Armenia, Ilaria, Giorgia Letizia Marcone, Francesca Berini, Viviana Teresa Orlandi, Cristina Pirrone, Eleonora Martegani, Rosalba Gornati, Giovanni Bernardini, and Flavia Marinelli. 2018. “Magnetic Nanoconjugated Teicoplanin: A Novel Tool for Bacterial Infection Site Targeting.” Frontiers in Microbiology 9: 2270. doi:10.3389/fmicb.2018.02270.
  • Bacchetta, R., E. Moschini, N. Santo, U. Fascio, L. Del Giacco, S. Freddi, M. Camatini, P. Mantecca. 2014. “Evidence and Uptake Routes for Zinc Oxide Nanoparticles through the Gastrointestinal Barrier in Xenopus laevis.” Nanotoxicology 8(7): 728–744. doi:10.3109/17435390.2013.824128.
  • Bacchetta, Renato, Nadia Santo, Umberto Fascio, Elisa Moschini, Stefano Freddi, Giuseppe Chirico, Marina Camatini, and Paride Mantecca. 2012. “Nano-Sized CuO, TiO2 and ZnO Affect Xenopus laevis Development.” Nanotoxicology 6(4): 381–398. doi:10.3109/17435390.2011.579634.
  • Balzaretti, Riccardo, Fabian Meder, Marco P. Monopoli, Luca Boselli, Ilaria Armenia, Loredano Pollegioni, Giovanni Bernardini, and Rosalba Gornati. 2017. “Synthesis, Characterization and Programmable Toxicity of Iron Oxide Nanoparticles Conjugated with D-Amino Acid Oxidase.” Rsc Advances 7(3): 1439–1442. doi:10.1039/C6RA25349K.
  • Bernardini, G., C. Vismara, P. Boracchi, and M. Camatini. 1994. “Lethality, Teratogenicity and Growth Inhibition of Heptanol in Xenopus Assayed by a Modified Frog Embryo Teratogenesis assay-Xenopus (FETAX) Procedure.” Science of the Total Environment 151(1): 1–8. doi:10.1016/0048-9697(94)90480-4.
  • Blanco-Rojo, R., and M. P. Vaquero. 2019. “Iron Bioavailability from Food Fortification to Precision Nutrition. A Review.” Innovative Food Science & Emerging Technologies 51: 126–138. doi:10.1016/j.ifset.2018.04.015.
  • Bonfanti, Patrizia, Elisa Moschini, Melissa Saibene, Renato Bacchetta, Leonardo Rettighieri, Lorenzo Calabri, Anita Colombo, and Paride Mantecca. 2015. “Do Nanoparticle Physico-Chemical Properties and Developmental Exposure Window Influence Nano ZnO Embryotoxicity in Xenopus laevis?” International Journal of Environmental Research and Public Health 12(8): 8828–8848.
  • Bonfanti, P., M. Saibene, R. Bacchetta, P. Mantecca, and A. Colombo. 2018. “A Glyphosate Micro-Emulsion Formulation Displays Teratogenicity in Xenopus laevis.” Aquatic Toxicology (Toxicology 195: 103–113. doi:10.1016/j.aquatox.2017.12.007.
  • Camaschella, C. 2019. “Iron Deficiency.” Blood 133(1): 30–39. doi:10.1182/blood-2018-05-815944.
  • Cappellini, Francesca, Camilla Recordati, Marcella De Maglie, Loredano Pollegioni, Federica Rossi, Marco Daturi, Rosalba Gornati, and Giovanni Bernardini. 2015. “New Synthesis and Biodistribution of the D-Amino Acid Oxidase-Magnetic Nanoparticle System.” Future Science OA 1(4): FSO67.
  • Chamorro, Susana, Lucía Gutiérrez, María Pilar Vaquero, Dolores Verdoy, Gorka Salas, Yurena Luengo, Agustín Brenes, and Francisco José Teran. 2015. “Safety Assessment of Chronic Oral Exposure to Iron Oxide Nanoparticles.” Nanotechnology 26(20): 205101. doi:10.1088/0957-4484/26/20/205101.
  • Chen, P.-J., S.-W. Tan, and W.-L. Wu. 2012. “Stabilization or Oxidation of Nanoscale Zerovalent Iron at Environmentally Relevant Exposure Changes Bioavailability and Toxicity in Medaka Fish.” Environmental Science Technology. 46(15): 8431–8439.
  • Chen, P.-J., W.-L. Wu, and K. C.-W. Wu. 2013. “The Zerovalent Iron Nanoparticle Causes Higher Developmental Toxicity than Its Oxidation Products in Early Life Stages of Medaka Fish.” Water Research 47(12): 3899–3909.
  • Chenon, P., L. Gauthier, P. Loubieres, A. Severac, and M. Delpoux. 2003. “Evaluation of the Genotoxic and Teratogenic Potential of a Municipal Sludge and Sludge-Amended Soil Using the Amphibian Xenopus laevis and the Tobacco: Nicotiana tabacum L. var. xanthi Dulieu.” Science of the Total Environment 301(1–3): 139–150. doi:10.1016/S0048-9697(02)00287-5.
  • Coccini, T., U. De Simone, M. Roccio, S. Croce, E. Lenta, M. Zecca, A. Spinillo, and M. A. Avanzini. 2019. “In Vitro Toxicity Screening of Magnetite Nanoparticles by Applying Mesenchymal Stem Cells Derived from Human Umbilical Cord Lining.” Journal of Applied Toxicology 39(9): 1320–1336. doi:10.1002/jat.3819.
  • Colombo, Anita, Melissa Saibene, Elisa Moschini, Patrizia Bonfanti, Maddalena Collini, Kaja Kasemets, and Paride Mantecca. 2017. “Teratogenic Hazard of BPEI-Coated Silver Nanoparticles to Xenopus laevis.” Nanotoxicology 11(3): 405–418. doi:10.1080/17435390.2017.1309703.
  • Dawson, D. A. 1991. “Additive Incidence of Developmental Malformation for Xenopus Embryos Exposed to a Mixture of Ten Aliphatic Carboxylic Acids.” Teratology 44(5): 531–546.
  • Dumont, J., N. T. W. Schultz, M. V. Buchanan, and G. L. Kao. 1983. “Frog Embryo Teratogenesis Assay: Xenopus (FETAX) – a Short-Term Assay Applicable to Complex Environmental Mixtures.” In Short-Term Bioassays in the Analysis of Complex Environmental Mixtures III Environmental Science Research Vol 27, edited by Waters M.D., Lewtas J., Claxton L., Chernoff N., Nesnow S, 393–405. Boston, MA: Springer.
  • Feng, Q., Y. Liu, J. Huang, K. Chen, J. Huang, and K. Xiao. 2018. “Uptake, Distribution, Clearance, and Toxicity of Iron Oxide Nanoparticles with Different Sizes and Coatings.” Scientific Reports 8(1): 2082. doi:10.1038/s41598-018-19628-z.
  • Fleck, C. C., and R. R. Netz. 2004. “Electrostatic Colloid-Membrane Binding.” Europhysics Letters (Epl) 67(2): 314–320. doi:10.1209/epl/i2004-10068-x.
  • Fort, D., D. McLaughlin, and J. Burkhart. 2003. “The FETAX of Today — and Tomorrow.” In STP1443-EB Multiple Stressor Effects in Relation to Declining Amphibian Populations, edited by Linder, Krest S, Sparling D, Little E, 23–45. West Conshohocken, PA: ASTM International. doi:10.1520/STP11173S.
  • Fort, D. J., D. W. McLaughlin, R. L. Rogers, and B. O. Buzzard. 2003. “Evaluation of the Developmental Toxicities of Ethanol, Acetaldehyde, and Thioacetamide Using FETAX.” Drug and Chemical Toxicology 26(1): 23–34. doi:10.1081/DCT-120017555.
  • Fort, D. J., and R. Robbin. 2002. “Enhancing the Predictive Validity of Frog Embryo Teratogenesis Assay—Xenopus (FETAX).” Journal of Applied Toxicology 22(3): 185–191. doi:10.1002/jat.848.
  • Garber, E. A. E., J. L. Erb, J. Magner, and G. Larsen. 2004. “Low Levels of Sodium and Potassium in the Water from Wetlands in Minnesota That Contained Malformed Frogs Affect the Rate of Xenopus Development.” Environmental Monitoring and Assessment 90(1–3): 45–64. doi:10.1023/B:EMAS.0000003565.25474.8f.
  • Gornati, Rosalba, Elisa Pedretti, Federica Rossi, Francesca Cappellini, Michela Zanella, Iolanda Olivato, Enrico Sabbioni, and Giovanni Bernardini. 2016. “Zerovalent Fe, Co and Ni Nanoparticle Toxicity Evaluated on SKOV-3 and U87 Cell Lines.” Journal of Applied Toxicology 36(3): 385–393. doi:10.1002/jat.3220.
  • Grieger, K. D., A. Fjordbøge, N. B. Hartmann, E. Eriksson, P. L. Bjerg, and A. Baun. 2010. “Environmental Benefits and Risks of Zero-Valent Iron Nanoparticles (nZVI) for in Situ Remediation: Risk Mitigation or Trade-off?” Journal of Contaminant Hydrology 118(3-4): 165–183. doi:10.1016/j.jconhyd.2010.07.011.
  • Hausen, P., and M. Riebesell. 1991. The Early Development of Xenopus Laevis: An Atlas of the Histology. Berlin and Heidelberg: Springer-Verlag.
  • Hilty, Florentine M., Myrtha Arnold, Monika Hilbe, Alexandra Teleki, Jesper T. N. Knijnenburg, Felix Ehrensperger, Richard F. Hurrell, Sotiris E. Pratsinis, Wolfgang Langhans, Michael B. Zimmermann., et al. 2010. “Iron from Nanocompounds Containing Iron and Zinc Is Highly Bioavailable in Rats without Tissue Accumulation.” Nature Nanotechnology 5(5): 374–380. doi:10.1038/nnano.2010.79.
  • Hosny, K. M., Z. M. Banjar, A. H. Hariri, and A. H. Hassan. 2015. “Solid Lipid Nanoparticles Loaded with Iron to Overcome Barriers for Treatment of Iron Deficiency anemia.” Drug Design, Development and Therapy 9: 313–320. doi:10.2147/DDDT.S77702.
  • Jahn, M. R., T. Nawroth, S. Futterer, U. Wolfrum, U. Kolb, and P. Langguth. 2012. “Iron Oxide/Hydroxide Nanoparticles with Negatively Charged Shells Show Increased Uptake in Caco-2 Cells.” Molecular Pharmaceutics 9(6): 1628–1637.
  • Kandasamy, G., and D. Maity. 2015. “Recent Advances in Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for in Vitro and in Vivo Cancer Nanotheranostics.” International Journal of Pharmaceutics 496(2): 191–218. doi:10.1016/j.ijpharm.2015.10.058.
  • Kassebaum, N. J., G. B. D. A. Collaborators, T. D. Fleming. 2016. “The Global Burden of Anemia.” Hematology/Oncology Clinics of North America 30(2): 247–308. doi:10.1016/j.hoc.2015.11.002.
  • Li, S., W. Wang, F. Liang, and W.-X. Zhang. 2017. “Heavy Metal Removal Using Nanoscale Zero-Valent Iron (nZVI): Theory and Application.” Journal of Hazardous Materials 322(Pt A): 163–171. doi:10.1016/j.jhazmat.2016.01.032.
  • Marin-Barba, M., H. Gavilan, L. Gutierrez, Lozano-Velasco E, Rodríguez-Ramiro I, Wheeler G. N., Morris C. J., Morales M. P., Ruiz A. 2018. “Unravelling the Mechanisms That Determine the Uptake and Metabolism of Magnetic Single and Multicore Nanoparticles in a Xenopus laevis Model.” Nanoscale 10(2): 690–704.
  • Moros, M., J. Idiago-Lopez, L. Asin, E. Moreno-Antolín, L. Beola, V. Grazú, R. M. Fratila, L. Gutiérrez, J. M. de la Fuente. 2018. “Triggering Antitumoural Drug Release and Gene Expression by Magnetic Hyperthermia.” Advanced Drug Delivery Reviews 138: 326–343.
  • Nations, S., M. Wages, J. E. Canas, J. Maul, C. Theodorakis, and G. P. Cobb. 2011. “Acute Effects of Fe2O3, TiO2, ZnO and CuO Nanomaterials on Xenopus laevis.” Chemosphere 83(8): 1053–1061. doi:10.1016/j.chemosphere.2011.01.061.
  • Nel, A., T. Xia, L. Mädler, and N. Li. 2006. “Toxic Potential of Materials at the Nanolevel.” Science 311(5761): 622–627. doi:10.1126/science.1114397.
  • Nieuwkoop, P., and J. Faber. 1956. Normal Table of Xenopus laevis (Daudin): A Systematical and Chronologica Survey of the Development from the Fertilized Egg till the End of Metamorphosis Amsterdam: North Holland Publishing Co.
  • Perfecto, A., C. Elgy, E. Valsami-Jones, P. Sharp, F. Hilty, and S. Fairweather-Tait. 2017. “Mechanisms of Iron Uptake from Ferric Phosphate Nanoparticles in Human Intestinal Caco-2 Cells.” Nutrients 9(4): 359. doi:10.3390/nu9040359.
  • Prati, M., E. Biganzoli, P. Boracchi, M. Tesauro, C. Monetti, and G. Bernardini. 2000. “Ecotoxicological Soil Evaluation by FETAX.” Chemosphere 41(10): 1621–1628. doi:10.1016/S0045-6535(00)00034-5.
  • Prati, Mariangela, Rosalba Gornati, Patrizia Boracchi, Elia Biganzoli, Salvador Fortaner, Romano Pietra, Enrico Sabbioni, and Giovanni Bernardini. 2002. “A Comparative Study of the Toxicity of Mercury Dichloride and Methylmercury, Assayed by the Frog Embryo Teratogenesis Assay–Xenopus (FETAX).” Alternatives to Laboratory Animals 30(1): 23–32. doi:10.1177/026119290203000104.
  • Presutti, C., C. Vismara, M. Camatini, and G. Bernardini. 1994. “Ecotoxicological Effects of a Nonionic Detergent (Triton DF-16) Assayed by modFETAX.” Bulletin of Environmental Contamination and Toxicology 53(3): 405–411.
  • Prins, F. A., I. C. Velde, and E. de Heer. 2006. “Reflection Contrast Microscopy: The Bridge between Light and Electron Microscopy.” Methods in Molecular Biology 319: 363–401.
  • Rohner, Fabian, Frank O. Ernst, Myrtha Arnold, Monika Hilbe, Ralf Biebinger, Frank Ehrensperger, Sotiris E. Pratsinis, Wolfgang Langhans, Richard F. Hurrell, Michael B. Zimmermann., et al. 2007. “Synthesis, Characterization, and Bioavailability in Rats of Ferric Phosphate Nanoparticles.” The Journal of Nutrition 137(3): 614–619.
  • Song, C., W. Sun, Y. Xiao, and X. Shi. 2019. “Ultrasmall Iron Oxide Nanoparticles: Synthesis, Surface Modification, Assembly, and Biomedical Applications.” Drug Discovery Today.
  • Tolkien, Z., L. Stecher, A. P. Mander, D. I. Pereira, and J. J. Powell. 2015. “Ferrous Sulfate Supplementation Causes Significant Gastrointestinal Side-Effects in Adults: A Systematic Review and Meta-Analysis.” PLoS One 10(2): e0117383. doi:10.1371/journal.pone.0117383.
  • Valdiglesias, Vanessa, Gözde Kiliç, Carla Costa, Natalia Fernández-Bertólez, Eduardo Pásaro, João Paulo Teixeira, and Blanca Laffon. 2015. “Effects of Iron Oxide Nanoparticles: Cytotoxicity, Genotoxicity, Developmental Toxicity, and Neurotoxicity.” Environmental and Molecular Mutagenesis 56(2): 125–148.
  • Vismara, C., G. Bernardini, P. Bonfanti, A. Colombo, and M. Camatini. 1993. “The Use of in Vitro Fertilization in the Frog Embryo Teratogenesis Assay in Xenopus (FETAX) and Its Applications to Ecotoxicology.” The Science of the Total Environment 134 Suppl Pt 1: 787–790.
  • von Moos, Lea M., Mirjam Schneider, Florentine M. Hilty, Monika Hilbe, Myrtha Arnold, Nathalie Ziegler, Diogo Sales Mato, Hans Winkler, Mohamed Tarik, Christian Ludwig., et al. 2017. “Iron Phosphate Nanoparticles for Food Fortification: Biological Effects in Rats and Human Cell Lines.” Nanotoxicology 11(4): 496–506. doi:10.1080/17435390.2017.1314035.
  • Webster, C. A., D. Di Silvio, A. Devarajan, P. Bigini, E. Micotti, C. Giudice, M. Salmona, G. N. Wheeler, V. Sherwood, and F. B. Bombelli. 2016. “An Early Developmental Vertebrate Model for Nanomaterial Safety: Bridging Cell-Based and Mammalian Toxicity Assessment.” Nanomedicine 11(6): 643–656. doi:10.2217/nnm.15.219.
  • Wheeler, G. N., and A. W. Brandli. 2009. “Simple Vertebrate Models for Chemical Genetics and Drug Discovery Screens: Lessons from Zebrafish and Xenopus.” Developmental Dynamics 238(6): 1287–1308. doi:10.1002/dvdy.21967.
  • Yu, M. R., Y. W. Yang, C. L. Zhu, S. Y. Guo, and Y. Gan. 2016. “Advances in the Transepithelial Transport of Nanoparticles.” Drug Discovery Today 21(7): 1155–1161. doi:10.1016/j.drudis.2016.05.007.
  • Zanella, D., E. Bossi, R. Gornati, C. Bastos, N. Faria, and G. Bernardini. 2017. “Iron Oxide Nanoparticles Can Cross Plasma Membranes.” Scientific Reports 7. doi:10.1038/s41598-017-11535-z.
  • Zhao, X., W. Liu, Z. Cai, B. Han, T. Qian, and D. Zhao. 2016. “An Overview of Preparation and Applications of Stabilized Zero-Valent Iron Nanoparticles for Soil and Groundwater Remediation.” Water Research 100: 245–266. doi:10.1016/j.watres.2016.05.019.
  • Zhu, X., S. Tian, and Z. Cai. 2012. “Toxicity Assessment of Iron Oxide Nanoparticles in Zebrafish (Danio rerio) Early Life Stages.” PLoS One 7(9): e46286. doi:10.1371/journal.pone.0046286.
  • Zimmermann, M. B., R. Biebinger, I. Egli, C. Zeder, and R. F. Hurrell. 2011. “Iron Deficiency up-Regulates Iron Absorption from Ferrous Sulphate but Not Ferric Pyrophosphate and Consequently Food Fortification with Ferrous Sulphate Has Relatively Greater Efficacy in Iron-Deficient Individuals.” British Journal of Nutrition 105(8): 1245–1250. doi:10.1017/S0007114510004903.