315
Views
11
CrossRef citations to date
0
Altmetric
Article

The nanomaterial-induced bystander effects reprogrammed macrophage immune function and metabolic profile

ORCID Icon, &
Pages 1137-1155 | Received 29 May 2020, Accepted 25 Aug 2020, Published online: 11 Sep 2020

References

  • Al-Mayah, A. H. J., S. L. Irons, R. C. Pink, D. R. F. Carter, and M. A. Kadhim. 2012. “Possible Role of Exosomes Containing RNA in Mediating Nontargeted Effect of Ionizing Radiation.” Radiation Research 177 (5): 539–545. doi:10.1667/rr2868.1.
  • Bai, X., S. Wang, X. Yan, H. Zhou, J. Zhan, S. Liu, V. K. Sharma, G. Jiang, H. Zhu, and B. Yan. 2020. “Regulation of Cell Uptake and Cytotoxicity by Nanoparticle Core under the Controlled Shape, Size, and Surface Chemistries.” ACS Nano 14 (1): 289–302. doi:10.1021/acsnano.9b04407.
  • Baranov, M. V., N. H. Revelo, I. Dingjan, R. Maraspini, M. ter Beest, A. Honigmann, and G. van den Bogaart. 2016. “SWAP70 Organizes the Actin Cytoskeleton and is Essential for Phagocytosis.” Cell Reports 17 (6): 1518–1531. doi:10.1016/j.celrep.2016.10.021.
  • Barger, S. R., N. S. Reilly, M. S. Shutova, Q. Li, P. Maiuri, J. M. Heddleston, M. S. Mooseker, et al. 2019. “Membrane-Cytoskeletal Crosstalk Mediated by myosin-I Regulates Adhesion Turnover during Phagocytosis.” Nature Communications 10 (1): 1249. doi:10.1038/s41467-019-09104-1.
  • Bewicke-Copley, F., L. A. Mulcahy, L. A. Jacobs, P. Samuel, N. Akbar, R. C. Pink, and D. R. F. Carter. 2017. “Extracellular Vesicles Released following Heat Stress Induce Bystander Effect in Unstressed populations.” Journal of Extracellular Vesicles 6 (1): 1340746. doi:10.1080/20013078.2017.1340746.
  • Bhabra, G., A. Sood, B. Fisher, L. Cartwright, M. Saunders, W. H. Evans, A. Surprenant, et al. 2009. “Nanoparticles Can Cause DNA Damage across a Cellular barrier.” Nature Nanotechnology 4 (12): 876–883. doi:10.1038/Nnano.2009.313.
  • Bonizzi, G., and M. Karin. 2004. “The Two NF-kappaB activation pathways and their role in innate and adaptive immunity.” Trends in Immunology 25 (6): 280–288. doi:10.1016/j.it.2004.03.008.
  • Braydich-Stolle, L. K., J. L. Speshock, A. Castle, M. Smith, R. C. Murdock, and S. M. Hussain. 2010. “Nanosized Aluminum Altered Immune Function.” ACS Nano 4 (7): 3661–3670. doi:10.1021/nn9016789.
  • Buchman, J. T., N. V. Hudson-Smith, K. M. Landy, and C. L. Haynes. 2019. “Understanding Nanoparticle Toxicity Mechanisms to Inform Redesign Strategies to Reduce Environmental Impact.” Accounts of Chemical Research 52 (6): 1632–1642. doi:10.1021/acs.accounts.9b00053.
  • Chen, Y. M., X. G. Hu, J. Sun, and Q. X. Zhou. 2016. “Specific Nanotoxicity of Graphene Oxide during Zebrafish Embryogenesis.” Nanotoxicology 10 (1): 42–52. doi:10.3109/17435390.2015.1005032.
  • Cheng, L., J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, et al. 2014. “PEGylated WS(2) nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy.” Advanced Materials 26 (12): 1886–1893. doi:10.1002/adma.201304497.
  • Chong, J., O. Soufan, C. Li, I. Caraus, S. Li, G. Bourque, D. S. Wishart, and J. Xia. 2018. “MetaboAnalyst 4.0: Towards More Transparent and Integrative Metabolomics Analysis.” Nucleic Acids Research 46 (W1): W486–W494. doi:10.1093/nar/gky310.
  • Colegio, Oscar R., Ngoc-Quynh Chu, Alison L. Szabo, Thach Chu, Anne Marie Rhebergen, Vikram Jairam, Nika Cyrus, et al. 2014. “Functional Polarization of Tumour-Associated Macrophages by Tumour-Derived Lactic Acid.” Nature 513 (7519): 559–563. doi:10.1038/nature13490.
  • Dobrovolskaia, M. A., and S. E. McNeil. 2007. “Immunological Properties of Engineered Nanomaterials.” Nature Nanotechnology 2 (8): 469–478. doi:10.1038/nnano.2007.223.
  • Flavell, R. A., S. Sanjabi, S. H. Wrzesinski, and P. Licona-Limón. 2010. “The Polarization of Immune Cells in the Tumour Environment by TGFbeta.” Nature Reviews. Immunology 10 (8): 554–567. doi:10.1038/nri2808.
  • Fuchs, Ann-Kathrin, Tatiana Syrovets, Karina A. Haas, Cornelia Loos, Anna Musyanovych, Volker Mailänder, Katharina Landfester, and Thomas Simmet. 2016. “Carboxyl- and Amino-Functionalized Polystyrene Nanoparticles Differentially Affect the Polarization Profile of M1 and M2 Macrophage Subsets.” Biomaterials 85: 78–87. doi:10.1016/j.biomaterials.2016.01.064.
  • Geeraerts, X., E. Bolli, S.-M. Fendt, and J. A. Van Ginderachter. 2017. “Macrophage Metabolism as Therapeutic Target for Cancer, Atherosclerosis, and Obesity.” Frontiers in Immunology 8: 289. doi: 10.3389/fmmu.2017.00289.
  • Gu, Z., T. Liu, J. Tang, Y. Yang, H. Song, Z. K. Tuong, J. Fu, and C. Yu. 2019. “Mechanism of Iron Oxide-Induced Macrophage Activation: The Impact of Composition and the Underlying Signaling Pathway.” Journal of the American Chemical Society 141 (15): 6122–6126. doi:10.1021/jacs.8b10904.
  • Guo, S., J. Zhou, X. Chen, Y. Yu, M. Ren, G. Hu, Y. Liu, and F. Zou. 2014. “Bystander Effects of PC12 Cells Treated with Pb2+ depend on ROS-mitochondria-dependent apoptotic signaling via gap-junctional intercellular communication.” Toxicology Letters 229 (1): 150–157. doi:10.1016/j.toxlet.2014.05.026.
  • Han, W., L. Wu, S. Chen, L. Bao, L. Zhang, E. Jiang, Y. Zhao, A. Xu, T. K. Hei, and Z. Yu. 2007. “Constitutive Nitric Oxide Acting as a Possible Intercellular Signaling Molecule in the Initiation of Radiation-Induced DNA Double Strand Breaks in Non-Irradiated Bystander Cells.” Oncogene 26 (16): 2330–2339. doi:10.1038/sj.onc.1210024.
  • Hawkins, S. J., L. A. Crompton, A. Sood, M. Saunders, N. T. Boyle, A. Buckley, A. M. Minogue, et al. 2018. “Nanoparticle-Induced Neuronal Toxicity across Placental Barriers is Mediated by Autophagy and Dependent on Astrocytes.” Nature Nanotechnology 13 (5): 427–433. doi:10.1038/s41565-018-0085-3.
  • Hoefert, S., C. S. Hoefert, A. Munz, H. Northoff, A. Yuan, K. Reichenmiller, S. Reinert, and M. Grimm. 2016. “Altered Macrophagic THP-1 Cell Phagocytosis and Migration in Bisphosphonate-Related Osteonecrosis of the Jaw (BRONJ).” Clinical Oral Investigations 20 (5): 1043–1054. doi:10.1007/s00784-015-1584-3.
  • Huang, Z., B. Xu, X. Huang, Y. Zhang, M. Yu, X. Han, L. Song, et al. 2019. “Metabolomics Reveals the Role of Acetyl-l-Carnitine Metabolism in gamma-Fe2O3 NP-Induced Embryonic Development Toxicity via Mitochondria Damage.” Nanotoxicology 13 (2): 204–220. doi:10.1080/17435390.2018.1537411.
  • Jha, Abhishek K., Stanley C.-C. Huang, A. Sergushichev, V. Lampropoulou, Y. Ivanova, E. Loginicheva, K. Chmielewski, et al. 2015. “Network Integration of Parallel Metabolic and Transcriptional Data Reveals Metabolic Modules That Regulate Macrophage Polarization.” Immunity 42 (3): 419–430. doi:10.1016/j.immuni.2015.02.005.
  • Ji, Zhaoxia, Xue Jin, Saji George, Tian Xia, Huan Meng, Xiang Wang, Elizabeth Suarez, et al. 2010. “Dispersion and Stability Optimization of TiO2 Nanoparticles in Cell Culture Media.” Environmental Science and Technology 44 (19): 7309–7314.,doi:10.1021/es100417s.
  • Jiang, Y., X. Chen, W. Tian, X. Yin, J. Wang, and H. Yang. 2014. “The Role of TGF-β1-miR-21-ROS pathway in bystander responses induced by irradiated non-small-cell lung cancer cells.” British Journal of Cancer 111 (4): 772–780. doi:10.1038/bjc.2014.368.
  • Jin, C., S. Wu, X. Lu, Q. Liu, L. Zhang, J. Yang, Q. Xi, and Y. Cai. 2012. “Conditioned Medium from Actinomycin D-Treated Apoptotic Cells Induces Mitochondria-Dependent Apoptosis in Bystander Cells.” Toxicology Letters 211 (1): 45–53. doi:10.1016/j.toxlet.2012.02.020.
  • Kalluri, R., and V. S. LeBleu. 2020. “The Biology, Function, and Biomedical Applications of Exosomes.” Science 367 (6478): eaau6977. doi:10.1126/science. aau6977.
  • Kirolikar, S., P. Prasannan, G. V. Raghuram, N. Pancholi, T. Saha, P. Tidke, P. Chaudhari, et al. 2018. “Prevention of Radiation-Induced Bystander Effects by Agents That Inactivate Cell-Free Chromatin Released from Irradiated Dying Cells.” Cell Death & Disease 9 (12): 1142. doi:10.1038/s41419-018-1181-x.
  • Klein, S. G., T. Serchi, L. Hoffmann, B. Blömeke, and A. C. Gutleb. 2013. “An Improved 3D Tetraculture System Mimicking the Cellular Organisation at the Alveolar Barrier to Study the Potential Toxic Effects of Particles on the lung.” Particle and Fibre Toxicology 10: 31. doi:10.1186/1743-8977-10-31.
  • Kodali, V., M. H. Littke, S. C. Tilton, J. G. Teeguarden, L. Shi, C. W. Frevert, W. Wang, J. G. Pounds, and B. D. Thrall. 2013. “Dysregulation of Macrophage Activation Profiles by Engineered nanoparticles.” ACS Nano 7 (8): 6997–7010. doi:10.1021/nn402145t.
  • Li, R. B., L. M. Guiney, C. H. Chang, N. D. Mansukhani, Z. X. Ji, X. Wang, Y. P. Liao, et al. 2018. “Surface Oxidation of Graphene Oxide Determines Membrane Damage, Lipid Peroxidation, and Cytotoxicity in Macrophages in a Pulmonary Toxicity Model.” ACS Nano 12 (2): 1390–1402. doi:10.1021/acsnano.7b07737.
  • Lim, S. L., C. T. Ng, L. Zou, Y. Lu, J. Chen, B. H. Bay, H.-M. Shen, and C. N. Ong. 2019. “Targeted Metabolomics Reveals Differential Biological Effects of Nanoplastics and nanoZnO in Human Lung Cells.” Nanotoxicology 13 (8): 1117–1132. doi:10.1080/17435390.2019.1640913.
  • Lindeque, J. Z., A. Matthyser, S. Mason, R. Louw, and C. J. F. Taute. 2018. “Metabolomics Reveals the Depletion of Intracellular Metabolites in HepG2 Cells after Treatment with Gold Nanoparticles.” Nanotoxicology 12 (3): 251–262. doi:10.1080/17435390.2018.1432779.
  • Liu, T., C. Wang, X. Gu, H. Gong, L. Cheng, X. Shi, L. Feng, B. Sun, and Z. Liu. 2014. “Drug Delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer.” Advanced Materials 26 (21): 3433–3440. doi:10.1002/adma.201305256.
  • Mahler, B., V. Hoepfner, K. Liao, and G. A. Ozin. 2014. “Colloidal Synthesis of 1T-WS2 and 2H-WS2 Nanosheets: applications for Photocatalytic Hydrogen Evolution.” Journal of the American Chemical Society 136 (40): 14121–14127. doi:10.1021/ja506261t.
  • Mathieu, M.,. L. Martin-Jaular, G. Lavieu, and C. Théry. 2019. “Specificities of Secretion and Uptake of Exosomes and Other Extracellular Vesicles for Cell-to-Cell Communication.” Nature Cell Biology 21 (1): 9–17. doi:10.1038/s41556-018-0250-9.
  • Mo, J. B., Q. Y. Xie, W. Wei, and J. Zhao. 2018. “Revealing the Immune Perturbation of Black Phosphorus Nanomaterials to Macrophages by Understanding the Protein Corona.” Nature Communications 9 (1): 2480doi:10.1038/s41467-018-04873-7.
  • Mo, L.J., M. Song, Q.H. Huang, H. Guan, X.D. Liu, D.F. Xie, B. Huang, R.X. Huang, and P.K. Zhou. 2018. “Exosome-packaged miR-1246 contributes to bystander DNA damage by targeting LIG4.” British Journal of Cancer 119 (4): 492–502. doi:10.1038/s41416-018-0192-9.
  • Mu, Q. X., G. B. Jiang, L. X. Chen, H. Y. Zhou, D. Fourches, A. Tropsha, and B. Yan. 2014. “Chemical Basis of Interactions between Engineered Nanoparticles and Biological Systems.” Chemical Reviews 114 (15): 7740–7781. doi:10.1021/cr400295a.
  • Murray, Peter J., Judith E. Allen, Subhra K. Biswas, Edward A. Fisher, Derek W. Gilroy, Sergij Goerdt, Siamon Gordon, et al. 2014. “Macrophage Activation and Polarization: nomenclature and Experimental Guidelines.” Immunity 41 (1): 14–20. doi:10.1016/j.immuni.2014.06.008.
  • Ng, C. T., L. Y. L. Yung, H. L. F. Swa, R. W. Y. Poh, J. Gunaratne, and B. H. Bay. 2015. “Altered Protein Expression Profile Associated with Phenotypic Changes in Lung Fibroblasts co-Cultured with Gold Nanoparticle-Treated Small Airway Epithelial Cells.” Biomaterials 39: 31–38. doi:10.1016/j.biomaterials.2014.10.063.
  • O'Neill, L. A. J., R. J. Kishton, and J. Rathmell. 2016. “A Guide to Immunometabolism for Immunologists.” Nature Reviews. Immunology 16 (9): 553–565. doi:10.1038/nri.2016.70.
  • Pei, H., W. Hu, Z. Guo, H. Chen, J. Ma, W. Mao, B. Li, et al. 2018. “Long Non-Coding RNA CRYBG3 Blocks Cytokinesis by Directly Binding G-Actin.” Cancer Research 78 (16): 4563–4572. doi:10.1158/0008-5472.CAN-18-0988.
  • Peng, Y., M. Zhang, L. Zheng, Q. Liang, H. Li, J.-T. Chen, H. Guo, et al. 2017. “Cysteine Protease Cathepsin B Mediates Radiation-Induced Bystander Effects.” Nature 547 (7664): 458–462. doi:10.1038/nature23284.
  • Poyer, F., C. D. Thomas, G. Garcia, A. Croisy, D. Carrez, P. Maillard, M. Lupu, and J. Mispelter. 2012. “PDT Induced Bystander Effect on Human Xenografted Colorectal Tumors as Evidenced by Sodium MRI.” Photodiagnosis and Photodynamic Therapy 9 (4): 303–309. doi:10.1016/j.pdpdt.2012.03.001.
  • Puchalska, P., X. Huang, S. E. Martin, X. Han, G. J. Patti, and P. A. Crawford. 2018. “Isotope Tracing Untargeted Metabolomics Reveals Macrophage Polarization-State-Specific Metabolic Coordination across Intracellular Compartments.” iScience 9: 298–313. doi:10.1016/j.isci.2018.10.029.
  • Purschke, M., H.-J. Laubach, R. Rox Anderson, and D. Manstein. 2010. “Thermal Injury Causes DNA Damage and Lethality in Unheated Surrounding Cells: active Thermal Bystander Effect.” Journal of Investigative Dermatology 130 (1): 86–92. doi:10.1038/jid.2009.205.
  • Qu, G., T. Xia, W. Zhou, X. Zhang, H. Zhang, L. Hu, J. Shi, X.-F. Yu, and G. Jiang. 2020. “ Property-Activity Relationship of Black Phosphorus at the Nano-Bio Interface: From Molecules to Organisms.” Chemical Reviews 120 (4): 2288–2346. doi:10.1021/acs.chemrev.9b00445.
  • Rougerie, P., V. Miskolci, and D. Cox. 2013. “Generation of Membrane Structures during Phagocytosis and Chemotaxis of Macrophages: role and Regulation of the Actin Cytoskeleton.” Immunological Reviews 256 (1): 222–239. doi:10.1111/imr.12118.
  • Selvaraj, V., N. Nepal, S. Rogers, N. D. P. K. Manne, R. Arvapalli, K. M. Rice, S. Asano, et al. 2015. “Inhibition of MAP Kinase/NF-kB Mediated Signaling and Attenuation of Lipopolysaccharide Induced Severe Sepsis by Cerium Oxide Nanoparticles.” Biomaterials 59: 160–171. doi:10.1016/j.biomaterials.2015.04.025.
  • Shao, C., M. Folkard, and K. M. Prise. 2008. “Role of TGF-beta1 and Nitric Oxide in the Bystander Response of Irradiated Glioma Cells.” Oncogene 27 (4): 434–440. doi:10.1038/sj.onc.1210653.
  • Song, M. L., T. Liu, C. R. Shi, X. Z. Zhang, and X. Y. Chen. 2016. “Bioconjugated Manganese Dioxide Nanoparticles Enhance Chemotherapy Response by Priming Tumor-Associated Macrophages toward M1-like Phenotype and Attenuating Tumor Hypoxia.” ACS Nano 10 (1): 633–647. doi:10.1021/acsnano.5b06779.
  • Sood, A., S. Salih, D. Roh, L. Lacharme-Lora, M. Parry, B. Hardiman, R. Keehan, et al. 2011. “Signalling of DNA Damage and Cytokines across Cell Barriers Exposed to Nanoparticles Depends on Barrier Thickness.” Nature Nanotechnology 6 (12): 824–833. doi:10.1038/Nnano.2011.188.
  • Sun, L., Y. Ying, H. Huang, Z. Song, Y. Mao, Z. Xu, and X. Peng. 2014. “Ultrafast Molecule Separation through Layered WS(2) nanosheet membranes.” ACS Nano 8 (6): 6304–6311. doi:10.1021/nn501786m.
  • Sun, S.-C. 2017. “The Non-Canonical NF-κB Pathway in Immunity and Inflammation.” Nature Reviews. Immunology 17 (9): 545–558. doi:10.1038/nri.2017.52.
  • Thubagere, A., and B. M. Reinhard. 2010. “Nanoparticle-Induced Apoptosis Propagates through Hydrogen-Peroxide-Mediated Bystander Killing: insights from a Human Intestinal Epithelium in Vitro Model.” ACS Nano. 4 (7): 3611–3622. doi:10.1021/nn100389a.
  • Ventura, C., J. F. S. Pereira, P. Matos, B. Marques, P. Jordan, A. Sousa-Uva, and M. J. Silva. 2020. “Cytotoxicity and Genotoxicity of MWCNT-7 and Crocidolite: assessment in Alveolar Epithelial Cells versus Their Coculture with Monocyte-Derived Macrophages.” Nanotoxicology 14 (4): 479–503. doi:10.1080/17435390.2019.1695975.
  • Verma, N., and A. B. Tiku. 2017. “Significance and Nature of Bystander Responses Induced by Various Agents.” Mutation Research 773: 104–121. doi:10.1016/j.mrrev.2017.05.003.
  • Yin, Wenyan, Liang Yan, Jie Yu, Gan Tian, Liangjun Zhou, Xiaopeng Zheng, Xiao Zhang, et al. 2014. “High-Throughput Synthesis of Single-Layer MoS2 Nanosheets as a near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy.” ACS Nano 8 (7): 6922–6933. doi:10.1021/nn501647j.
  • Yuan, P., Q. Zhou, and X. Hu. 2018. “The Phases of WS2 Nanosheets Influence Uptake, Oxidative Stress, Lipid Peroxidation, Membrane Damage, and Metabolism in Algae.” Environmental Science and Technology 52 (22): 13543–13552. doi:10.1021/acs.est.8b04444.
  • Yuan, P., Q. Zhou, and X. Hu. 2020. “WS2 Nanosheets at Noncytotoxic Concentrations Enhance the Cytotoxicity of Organic Pollutants by Disturbing the Plasma Membrane and Efflux Pumps.” Environmental Science and Technology 54 (3): 1698–1709. doi:10.1021/acs.est.9b05537.
  • Zanganeh, S., G. Hutter, R. Spitler, O. Lenkov, M. Mahmoudi, A. Shaw, J. S. Pajarinen, et al. 2016. “Iron Oxide Nanoparticles Inhibit Tumour Growth by Inducing Pro-Inflammatory Macrophage Polarization in Tumour Tissues.” Nature Nanotechnology 11 (11): 986–994. doi:10.1038/Nnano.2016.168.
  • Zhang, F., H. S. Wang, X. F. Wang, G. M. Jiang, H. Liu, G. Zhang, H. Wang, et al. 2016. “ TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype.” Oncotarget 7 (32): 52294–52306. doi:10.18632/oncotarget.10561.
  • Zhang, H., X. Shao, H. Zhao, X. Li, J. Wei, C. Yang, and Z. Cai. 2019. “Integration of Metabolomics and Lipidomics Reveals Metabolic Mechanisms of Triclosan-Induced Toxicity in Human Hepatocytes.” Environmental Science and Technology 53 (9): 5406–5415. doi:10.1021/acs.est.8b07281.
  • Zheng, D. W., Q. Lei, J. Y. Zhu, J. X. Fan, C. X. Li, C. Li, Z. S. Xu, S. X. Cheng, and X. Z. Zhang. 2017. “Switching Apoptosis to Ferroptosis: metal-Organic Network for High-Efficiency Anticancer Therapy.” Nano Letters 17 (1): 284–291. doi:10.1021/acs.nanolett.6b04060.
  • Zhou, Q., Z. Yue, Q. Li, R. Zhou, and L. Liu. 2019. “Exposure to PbSe Nanoparticles and Male Reproductive Damage in a Rat Model.” Environmental Science and Technology 53 (22): 13408–13416. doi:10.1021/acs.est.9b03581.
  • Zhu, X. B., X. Y. Ji, N. Kong, Y. H. Chen, M. Mahmoudi, X. D. Xu, L. Ding, et al. 2018. “Intracellular Mechanistic Understanding of 2D MoS2 Nanosheets for anti-Exocytosis-Enhanced Synergistic Cancer Therapy.” ACS Nano 12 (3): 2922–2938. doi:10.1021/acsnano.8b00516.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.