2,733
Views
15
CrossRef citations to date
0
Altmetric
Articles

Pulmonary toxicity of synthetic amorphous silica – effects of porosity and copper oxide doping

ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 96-113 | Received 03 Jul 2020, Accepted 23 Oct 2020, Published online: 11 Nov 2020

References

  • Adamcakova-Dodd, A., M. M. Monick, L. S. Powers, K. N. Gibson-Corley, and P. S. Thorne. 2015. “Effects of Prenatal Inhalation Exposure to Copper Nanoparticles on Murine Dams and Offspring.” Particle and Fibre Toxicology 12: 30. doi:10.1186/s12989-015-0105-5.
  • Auyeung, E., W. Morris, J. E. Mondloch, J. T. Hupp, O. K. Farha, and C. A. Mirkin. 2015. “Controlling Structure and Porosity in Catalytic Nanoparticle Superlattices with DNA.” Journal of the American Chemical Society 137 (4): 1658–1662. doi:10.1021/ja512116p.
  • Baeza, A., D. Ruiz-Molina, and M. Vallet-Regí. 2017. “Recent Advances in Porous Nanoparticles for Drug Delivery in Antitumoral Applications: inorganic Nanoparticles and Nanoscale metal-organic frameworks.” Expert Opinion on Drug Delivery 14 (6): 783–796. doi:10.1080/17425247.2016.1229298.
  • Barfod, K. K., K. M. Bendtsen, T. Berthing, A. J. Koivisto, S. S. Poulsen, E. Segal, E. Verleysen, et al. 2020. “Increased Surface Area of Halloysite Nanotubes Due to Surface Modification Predicts Lung Inflammation and Acute Phase Response after Pulmonary Exposure in Mice.” Environmental Toxicology and Pharmacology 73: 103266. doi:10.1016/j.etap.2019.103266.
  • Baumann, R., M. Gube, A. Markert, S. Davatgarbenam, V. Kossack, B. Gerhards, T. Kraus, and P. Brand. 2018. “Systemic Serum Amyloid a as a Biomarker for Exposure to Zinc and/or copper-containing metal fumes.” Journal of Exposure Science & Environmental Epidemiology 28 (1): 84–91. doi:10.1038/jes.2016.86.
  • Bengtson, S., K. B. Knudsen, Z. O. Kyjovska, T. Berthing, V. Skaug, M. Levin, I. K. Koponen, et al. 2017. “Differences in Inflammation and Acute Phase Response but Similar Genotoxicity in Mice following Pulmonary Exposure to Graphene Oxide and Reduced Graphene Oxide.” PLoS One 12 (6): e0178355 doi:10.1371/journal.pone.0178355.
  • Cho, W. S., R. Duffin, C. A. Poland, A. Duschl, G. J. Oostingh, W. MacNee, M. Bradley, I. L. Megson, and K. Donaldson. 2012. “Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs .” Nanotoxicology 6 (1): 22–35. (1743-5404 (Electronic)), doi:10.3109/17435390.2011.552810.
  • Cho, W. S., R. Duffin, C. A. Poland, S. E. Howie, W. MacNee, M. Bradley, I. L. Megson, and K. Donaldson. 2010. “Metal Oxide Nanoparticles Induce Unique Inflammatory Footprints in the Lung: important Implications for Nanoparticle Testing.” Environmental Health Perspectives 118 (12): 1699–1706. (1552-9924 (Electronic)), doi:10.1289/ehp.1002201.
  • Corona-Rivera, A., P. Urbina-Cano, L. Bobadilla-Morales, J. de J. Vargas-Lares, M. A. Ramirez-Herrera, M. L. Mendoza-Magaua, R. Troyo-Sanroman, P. Diaz-Esquivel, and J. R. Corona-Rivera. 2007. “Protective in Vivo Effect of Curcumin on Copper Genotoxicity Evaluated by Comet and Micronucleus Assays.” Journal of Applied Genetics 48 (4): 389–396. doi:10.1007/BF03195238.
  • Danielsen, P. H., K. B. Knudsen, J. Štrancar, P. Umek, T. Koklič, M. Garvas, E. Vanhala, et al. 2020. “Effects of Physicochemical Properties of TiO2 Nanomaterials for Pulmonary Inflammation, Acute Phase Response and Alveolar Proteinosis in Intratracheally Exposed Mice.” Toxicology and Applied Pharmacology 386: 114830 doi:10.1016/j.taap.2019.114830.
  • El-Trass, A., H. ElShamy, I. El-Mehasseb, and M. El-Kemary. 2012. “CuO Nanoparticles: Synthesis, Characterization, Optical Properties and Interaction with Amino Acids.” Applied Surface Science 258 (7): 2997–3001.
  • Franke, S. I. R., D. Prá, R. Giulian, J. F. Dias, M. L. Yoneama, J. da Silva, B. Erdtmann, and J. A. P. Henriques. 2006. “Influence of Orange Juice in the Levels and in the Genotoxicity of Iron and copper.” Food and Chemical Toxicology 44 (3): 425–435. doi:10.1016/j.fct.2005.08.016.
  • Gosens, I., F. R. Cassee, M. Zanella, L. Manodori, A. Brunelli, A. L. Costa, B. G. H. Bokkers, et al. 2016. “Organ Burden and Pulmonary Toxicity of Nano-Sized Copper (II) Oxide Particles after Short-Term Inhalation Exposure.” Nanotoxicology 10 (8): 1084–1095. doi:10.3109/17435390.2016.1172678.
  • Graf, C., D. L. J. Vossen, A. Imhof, and A. van Blaaderen. 2003. “A General Method to Coat Colloidal Particles with Silica.” Langmuir 19 (17): 6693–6700.
  • Hadrup, N. 2014. “Evidence from Pharmacology and Pathophysiology Suggests That Chemicals with Dissimilar Mechanisms of Action Could Be of Bigger Concern in the Toxicological Risk Assessment of Chemical Mixtures than Chemicals with a Similar Mechanism of Action.” Regulatory Toxicology and Pharmacology : RTP 69 (3): 281–283. doi:10.1016/j.yrtph.2014.05.007.
  • Hadrup, N., S. Bengtson, N. R. Jacobsen, P. Jackson, M. Nocun, A. T. Saber, K. A. Jensen, H. Wallin, and U. Vogel. 2017. “Influence of Dispersion Medium on Nanomaterial-Induced Pulmonary Inflammation and DNA Strand Breaks: Investigation of Carbon Black, Carbon Nanotubes and Three Titanium Dioxide Nanoparticles.” Mutagenesis 32 (6): 581–597.
  • Hadrup, N., M. Pedersen, K. Skov, N. L. Hansen, L. O. Berthelsen, K. Kongsbak, J. Boberg, et al. 2016. “Perfluorononanoic Acid in Combination with 14 Chemicals Exerts Low-Dose Mixture Effects in Rats.” Archives of Toxicology 90 (3): 661–675.
  • Hadrup, N., F. Rahmani, N. R. Jacobsen, A. T. Saber, P. Jackson, S. Bengtson, A. Williams, H. Wallin, S. Halappanavar, and U. Vogel. 2019. “Acute Phase Response and Inflammation following Pulmonary Exposure to Low Doses of Zinc Oxide Nanoparticles in Mice.” Nanotoxicology 13 (9): 1275–1292. doi:10.1080/17435390.2019.1654004.
  • Hadrup, N., A. T. Saber, Z. O. Kyjovska, N. R. Jacobsen, M. Vippola, E. Sarlin, Y. Ding, et al. 2020. “Pulmonary Toxicity of Fe2O3, ZnFe2O4, NiFe2O4 and NiZnFe4O8 Nanomaterials: Inflammation and DNA Strand Breaks.” Environmental Toxicology and Pharmacology 74: 103303. doi:10.1016/j.etap.2019.103303.
  • Hadrup, N., C. Taxvig, M. Pedersen, C. Nellemann, U. Hass, and A. M. Vinggaard. 2013. “Concentration Addition, Independent Action and Generalized Concentration Addition Models for Mixture Effect Prediction of Sex Hormone Synthesis in Vitro.” PLoS One 8 (8): e70490.
  • Hadrup, N., V. Zhernovkov, N. R. Jacobsen, C. Voss, M. Strunz, M. Ansari, H. B. Schiller, et al. 2020. “Acute Phase Response as a Biological Mechanism-of-Action of (Nano)particle-Induced Cardiovascular Disease.” Small (Weinheim an Der Bergstrasse, Germany) 16 (21): e1907476.
  • Hirano, S., S. Sakai, H. Ebihara, N. Kodama, and K. T. Suzuki. 1990. “Metabolism and Pulmonary Toxicity of Intratracheally Instilled Cupric Sulfate in rats.” Toxicology 64 (3): 223–233.
  • Jackson, P., L. M. Pedersen, Z. O. Kyjovska, N. R. Jacobsen, A. T. Saber, K. S. Hougaard, U. Vogel, and H. Wallin. 2013. “Validation of Freezing Tissues and Cells for Analysis of DNA Strand Break Levels by Comet Assay.” Mutagenesis 28 (6): 699–707.
  • Jackson, P., S. P. Lund, G. Kristiansen, O. Andersen, U. Vogel, H. Wallin, and K. S. Hougaard. 2011. “An Experimental Protocol for Maternal Pulmonary Exposure in Developmental Toxicology.” Basic & Clinical Pharmacology & Toxicology 108 (3): 202–207. doi:10.1111/j.1742-7843.2010.00644.x.
  • Jacobsen, N. R., G. Pojana, P. White, P. Moller, C. A. Cohn, K. S. Korsholm, U. Vogel, A. Marcomini, S. Loft, and H. Wallin. 2008. “Genotoxicity, Cytotoxicity, and Reactive Oxygen Species Induced by Single-Walled Carbon Nanotubes and C(60) Fullerenes in the FE1-Mutatrade markMouse Lung Epithelial Cells.” Environmental and Molecular Mutagenesis 49 (6): 476–487. (1098-2280 (Electronic)), doi:10.1002/em.20406.
  • Jeong, J.,. J. Kim, S. H. Seok, and W.-S. Cho. 2016. “Indium Oxide (In2O3) Nanoparticles Induce Progressive Lung Injury Distinct from Lung Injuries by Copper Oxide (CuO) and Nickel Oxide (NiO) Nanoparticles.” Archives of Toxicology 90 (4): 817–828. doi:10.1007/s00204-015-1493-x.
  • Jeong, J.,. S. Lee, S.-H. Kim, Y. Han, D.-K. Lee, J.-Y. Yang, J. Jeong, C. Roh, Y. S. Huh, and W.-S. Cho. 2016. “Evaluation of the Dose Metric for Acute Lung Inflammogenicity of Fast-Dissolving Metal Oxide Nanoparticles.” Nanotoxicology 10 (10): 1448–1457. doi:10.1080/17435390.2016.1229518.
  • Koohestani, H., H. Mansouri, A. Pirmoradian, and M. Hassanabadi. 2020. “Investigation of Photocatalytic Efficiency of Supported CuO Nanoparticles on Natural Zeolite Particles in Photodegradation of Methyl Orange.” Journal of Nanoscience and Nanotechnology 20 (9): 5964–5969. doi:10.1166/jnn.2020.18548.
  • Kyjovska, Z. O., N. R. Jacobsen, A. T. Saber, S. Bengtson, P. Jackson, H. Wallin, and U. Vogel. 2015. “DNA Damage following Pulmonary Exposure by Instillation to Low Doses of Carbon Black (Printex 90) Nanoparticles in Mice.” Environmental and Molecular Mutagenesis 56 (1): 41–49. (1098-2280 (Electronic)), doi:10.1002/em.21888.
  • Lee, S., M.-S. Kim, D. Lee, T. K. Kwon, D. Khang, H.-S. Yun, and S.-H. Kim. 2013. “The Comparative Immunotoxicity of Mesoporous Silica Nanoparticles and Colloidal Silica Nanoparticles in Mice.” International Journal of Nanomedicine 8: 147–158. doi:10.2147/IJN.S39534.
  • Lindberg, H. K., G. C.-M. Falck, J. Catalán, A. J. Koivisto, S. Suhonen, H. Järventaus, E. M. Rossi, et al. 2012. “Genotoxicity of Inhaled Nanosized TiO(2) in Mice.” Mutation Research 745 (1-2): 58–64. doi:10.1016/j.mrgentox.2011.10.011.
  • Markert, A., R. Baumann, B. Gerhards, M. Gube, V. Kossack, T. Kraus, and P. Brand. 2016. “Single and Combined Exposure to Zinc- and Copper-Containing Welding Fumes Lead to Asymptomatic Systemic Inflammation.” Journal of Occupational and Environmental Medicine 58 (2): 127–132. doi:10.1097/JOM.0000000000000652.
  • Minigalieva, I. A., B. A. Katsnelson, V. G. Panov, L. I. Privalova, A. N. Varaksin, V. B. Gurvich, M. P. Sutunkova, et al. 2017. “In Vivo Toxicity of Copper Oxide, Lead Oxide and Zinc Oxide Nanoparticles Acting in Different Combinations and Its Attenuation with a Complex of Innocuous Bio-Protectors.” Toxicology 380: 72–93. doi:10.1016/j.tox.2017.02.007.
  • Park, H. J., J.-H. Sohn, Y.-J. Kim, Y. H. Park, H. Han, K. H. Park, K. Lee, et al. 2015. “Acute Exposure to Silica Nanoparticles Aggravate Airway Inflammation: different Effects according to Surface Characteristics.” Experimental & Molecular Medicine 47: e173. doi:10.1038/emm.2015.50.
  • Plappert-Helbig, U., S. Libertini, W. Frieauff, D. Theil, and H.-J. Martus. 2019. “Gamma-H2AX Immunofluorescence for the Detection of tissue-specific genotoxicity in vivo.” Environmental and Molecular Mutagenesis 60 (1): 4–16. doi:10.1002/em.22238.
  • Poulsen, S. S., P. Jackson, K. Kling, K. B. Knudsen, V. Skaug, Z. O. Kyjovska, B. L. Thomsen, et al. 2016. “Multi-Walled Carbon Nanotube Physicochemical Properties Predict Pulmonary Inflammation and Genotoxicity.” Nanotoxicology 10 (9): 1263–1275. (1743-5404 (Electronic)), doi:10.1080/17435390.2016.1202351.
  • Poulsen, S. S., K. B. Knudsen, P. Jackson, I. E. K. Weydahl, A. T. Saber, H. Wallin, and U. Vogel. 2017. “Multi-Walled Carbon Nanotube-Physicochemical Properties Predict the Systemic Acute Phase Response following Pulmonary Exposure in Mice.” PLoS One 12 (4): e0174167 doi:10.1371/journal.pone.0174167.
  • Prá, D., S. I. R. Franke, R. Giulian, M. L. Yoneama, J. F. Dias, B. Erdtmann, and J. A. P. Henriques. 2008. “Genotoxicity and Mutagenicity of Iron and Copper in mice.” Biometals : An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine 21 (3): 289–297. doi:10.1007/s10534-007-9118-3.
  • Prieditis, H., and I. Y. R. Adamson. 2002. “Comparative Pulmonary Toxicity of Various Soluble Metals Found in Urban Particulate Dusts.” Experimental Lung Research 28 (7): 563–576. doi:10.1080/01902140290096782.
  • Rice, T. M., R. W. Clarke, J. J. Godleski, E. Al-Mutairi, N. F. Jiang, R. Hauser, and J. D. Paulauskis. 2001. “Differential Ability of Transition Metals to Induce Pulmonary Inflammation.” Toxicology and Applied Pharmacology 177 (1): 46–53. doi:10.1006/taap.2001.9287.
  • Rydman, E. M., M. Ilves, E. Vanhala, M. Vippola, M. Lehto, P. A. S. Kinaret, L. Pylkkänen, et al. 2015. “A Single Aspiration of Rod-like Carbon Nanotubes Induces Asbestos-like Pulmonary Inflammation Mediated in Part by the IL-1 Receptor.” Toxicological Sciences : An Official Journal of the Society of Toxicology 147 (1): 140–155. doi:10.1093/toxsci/kfv112.
  • Saber, A. T., J. Bornholdt, M. Dybdahl, A. K. Sharma, S. Loft, U. Vogel, and H. Wallin. 2005. “Tumor Necrosis Factor is Not Required for Particle-Induced Genotoxicity and Pulmonary Inflammation.” Archives of Toxicology 79 (3): 177–182. (0340-5761 (Print)), doi:10.1007/s00204-004-0613-9.
  • Saber, A. T., N. R. Jacobsen, P. Jackson, S. S. Poulsen, Z. O. Kyjovska, S. Halappanavar, C. L. Yauk, H. Wallin, and U. Vogel. 2014. “Particle-Induced Pulmonary Acute Phase Response May Be the Causal Link between Particle Inhalation and Cardiovascular Disease.” Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology 6 (6): 517–531. (1939–0041 (Electronic)), doi:10.1002/wnan.1279.
  • Saber, A. T., J. S. Lamson, N. R. Jacobsen, G. Ravn-Haren, K. S. Hougaard, A. N. Nyendi, P. Wahlberg, et al. 2013. “Particle-Induced Pulmonary Acute Phase Response Correlates with Neutrophil Influx Linking Inhaled Particles and Cardiovascular Risk.” PLoS One 8 (7): e69020. (1932-6203 (Electronic)), doi:10.1371/journal.pone.0069020.
  • Saber, A. T., A. Mortensen, J. Szarek, N. R. Jacobsen, M. Levin, I. K. Koponen, K. A. Jensen, U. Vogel, and H. Wallin. 2019. “Toxicity of Pristine and paint-embedded TiO2 nanomaterials .” Human & Experimental Toxicology 38 (1): 11–24. doi:10.1177/0960327118774910.
  • Sahlgren, N., R. Atluri, O. Aguerre-Chariol, Y. Kembouche, P. Clausen, and K. Jensen. n.d. “Physicochemical Characteristics of Mesoporous Silica with and without CuO-Doping and Their Dissolution in Artificial Lung Fluids.” In preparation.
  • Schmid, O., and T. Stoeger. 2016. “Surface Area is the Biologically Most Effective Dose Metric for Acute Nanoparticle Toxicity in the Lung.” Journal of Aerosol Science 99: 133–143.
  • Smeets, V., L. Ben Mustapha, J. Schnee, E. M. Gaigneaux, and D. P. Debecker. 2018. “Mesoporous SiO2-TiO2 Epoxidation Catalysts: Tuning Surface Polarity to Improve Performance in the Presence of Water.” Molecular Catalysis 452: 123–128.
  • Thompson, J. C., P. G. Wilson, P. Shridas, A. Ji, M. de Beer, F. C. de Beer, N. R. Webb, and L. R. Tannock. 2018. “Serum Amyloid A3 is Pro-Atherogenic.” Atherosclerosis 268: 32–35.
  • Wallenborn, J. G., M. J. Schladweiler, J. H. Richards, and U. P. Kodavanti. 2009. “Differential Pulmonary and Cardiac Effects of Pulmonary Exposure to a Panel of Particulate Matter-Associated Metals.” Toxicology and Applied Pharmacology 241 (1): 71–80. doi:10.1016/j.taap.2009.08.003.
  • Witoon, T., T. Numpilai, T. Phongamwong, W. Donphai, C. Boonyuen, C. Warakulwit, M. Chareonpanich, and J. Limtrakul. 2018. “Enhanced Activity, Selectivity and Stability of a CuO-ZnO-ZrO2 Catalyst by Adding Graphene Oxide for CO2 Hydrogenation to Methanol.” Chemical Engineering Journal 334: 1781–1791.
  • Wu, S.-H., C.-Y. Mou, and H.-P. Lin. 2013. “Synthesis of Mesoporous Silica Nanoparticles.” Chemical Society Reviews 42 (9): 3862–3875. doi:10.1039/c3cs35405a.
  • Yokohira, M., N. Hashimoto, K. Yamakawa, S. Suzuki, K. Saoo, T. Kuno, and K. Imaida. 2009. “Lung Carcinogenic Bioassay of CuO and TiO(2) Nanoparticles with Intratracheal Instillation Using F344 Male Rats.” Journal of Toxicologic Pathology 22 (1): 71–78. (0914-9198 (Print)), doi:10.1293/tox.22.71.
  • Zhang, Q., K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, and S. Yang. 2014. “CuO Nanostructures: Synthesis, Characterization, Growth Mechanisms, Fundamental Properties, and Applications.” Progress in Materials Science 60: 208–337.
  • Zhao, S., D. Xu, H. Ma, Z. Sun, and J. Guan. 2012. “Controllable Preparation and Formation Mechanism of Monodispersed Silica Particles with Binary Sizes.” Journal of Colloid and Interface Science 388 (1): 40–46. doi:10.1016/j.jcis.2012.08.012.