296
Views
7
CrossRef citations to date
0
Altmetric
Articles

Combination effect of nanoparticles on the acute pulmonary inflammogenic potential: additive effect and antagonistic effect

, , , , , , , & show all
Pages 276-288 | Received 27 Feb 2020, Accepted 07 Dec 2020, Published online: 08 Feb 2021

References

  • Bihari, P., M. Vippola, S. Schultes, M. Praetner, A. G. Khandoga, C. A. Reichel, C. Coester, et al. 2008. “Optimized Dispersion of Nanoparticles for Biological in Vitro and in Vivo Studies.” Particle and Fibre Toxicology 5 (1): 14. doi:10.1186/1743-8977-5-14.
  • Borm, P., F. R. Cassee, and G. Oberdorster. 2015. “Lung Particle Overload: old School -New Insights?” Particle and Fibre Toxicology 12: 10. doi:10.1186/s12989-015-0086-4.
  • Brenner, S. A., N. M. Neu-Baker, C. Caglayan, and I. G. Zurbenko. 2016. “Occupational Exposure to Airborne Nanomaterials: An Assessment of Worker Exposure to Aerosolized Metal Oxide Nanoparticles in a Semiconductor Fab and Subfab.” Journal of Occupational and Environmental Hygiene13 (9): D138–147. doi:10.1080/15459624.2016.1183012.
  • Brouwer, D. 2010. “Exposure to Manufactured Nanoparticles in Different Workplaces.” Toxicology 269 (2-3): 120–127. doi:10.1016/j.tox.2009.11.017.
  • Charitidis, C. A., P. Georgiou, M. A. Koklioti, A.-F. Trompeta, and V. Markakis. 2014. “Manufacturing Nanomaterials: From Research to Industry.” Manufacturing Review 1: 11. doi:10.1051/mfreview/2014009.
  • Cho, W. S., R. Duffin, C. A. Poland, S. E. Howie, W. MacNee, M. Bradley, I. L. Megson, et al. 2010. “Metal Oxide Nanoparticles Induce Unique Inflammatory Footprints in the Lung: Important Implications for Nanoparticle Testing.” Environmental Health Perspectives118 (12): 1699–1706. doi:10.1289/ehp.1002201.
  • Cho, W. S., R. Duffin, F. Thielbeer, M. Bradley, I. L. Megson, W. Macnee, C. A. Poland, et al. 2012b. “Zeta Potential and Solubility to Toxic Ions as Mechanisms of Lung Inflammation Caused by Metal/Metal Oxide Nanoparticles.” Toxicological Sciences 126 (2): 469–477. doi:10.1093/toxsci/kfs006.
  • Cho, W. S., R. Duffin, M. Bradley, I. L. Megson, W. Macnee, S. E. Howie, and K. Donaldson. 2012a. “NiO and Co3O4 Nanoparticles Induce Lung DTH-like Responses and Alveolar Lipoproteinosis.” European Respiratory Journal 39 (3): 546–557. doi:10.1183/09031936.00047111.
  • Cho, W. S., R. Duffin, S. E. Howie, C. J. Scotton, W. A. Wallace, W. Macnee, M. Bradley, et al. 2011. “Progressive Severe Lung Injury by Zinc Oxide Nanoparticles; the Role of Zn2+ Dissolution inside Lysosomes.” Particle and Fibre Toxicology 8 (1): 27. doi:10.1186/1743-8977-8-27.
  • Coll, C.,. D. Notter, F. Gottschalk, T. Sun, C. Som, and B. Nowack. 2016. “Probabilistic Environmental Risk Assessment of Five Nanomaterials (Nano-TiO2, Nano-Ag, Nano-ZnO, CNT, and Fullerenes).” Nanotoxicology 10 (4): 436–444. doi:10.3109/17435390.2015.1073812.
  • Crouzier, D., S. Follot, E. Gentilhomme, E. Flahaut, R. Arnaud, V. Dabouis, C. Castellarin, et al. 2010. “Carbon Nanotubes Induce Inflammation but Decrease the Production of Reactive Oxygen Species in Lung.” Toxicology 272 (1-3): 39–45. doi:10.1016/j.tox.2010.04.001.
  • Deville, S., B. Bare, J. Piella, K. Tirez, P. Hoet, M. P. Monopoli, K. A. Dawson, et al. 2016. “Interaction of Gold Nanoparticles and Nickel(II) Sulfate Affects Dendritic Cell Maturation.” Nanotoxicology 10 (10): 1395–1403. doi:10.1080/17435390.2016.1221476.
  • Duffin, R., L. Tran, D. Brown, V. Stone, and K. Donaldson. 2007. “Proinflammogenic Effects of Low-Toxicity and Metal Nanoparticles in Vivo and in Vitro: highlighting the Role of Particle Surface Area and Surface Reactivity.” Inhalation Toxicology 19 (10): 849–856. doi:10.1080/08958370701479323.
  • Fenoglio, I., M. Tomatis, D. Lison, J. Muller, A. Fonseca, J. B. Nagy, and B. Fubini. 2006. “Reactivity of Carbon Nanotubes: Free Radical Generation or Scavenging Activity?” Free Radical Biology & Medicine 40 (7): 1227–1233. doi:10.1016/j.freeradbiomed.2005.11.010.
  • Han, Y., D. K. Lee, S. H. Kim, S. Lee, S. Jeon, and W. S. Cho. 2018. “High Inflammogenic Potential of Rare Earth Oxide Nanoparticles: The New Hazardous Entity.” Nanotoxicology 12 (7): 712–728. doi:10.1080/17435390.2018.1472311.
  • Huang, G., Y. Lu, C. Lu, M. Zheng, and Y. D. Cai. 2015. “Prediction of Drug Indications Based on Chemical Interactions and Chemical Similarities.” BioMed Research International 2015: 584546 doi:10.1155/2015/584546.
  • Hwang, S. H., F. Thielbeer, J. Jeong, Y. Han, S. V. Chankeshwara, M. Bradley, and W. S. Cho. 2016. “Dual Contribution of Surface Charge and Protein-Binding Affinity to the Cytotoxicity of Polystyrene Nanoparticles in Nonphagocytic A549 Cells and Phagocytic THP-1 Cells.” Journal of Toxicology and Environmental Health A79 (20): 925–937. doi:10.1080/15287394.2016.1207117.
  • Jeong, J., J. Kim, S. H. Seok, and W. S. Cho. 2016a. “Indium Oxide (In2O3) Nanoparticles Induce Progressive Lung Injury Distinct from Lung Injuries by Copper Oxide (CuO) and Nickel Oxide (NiO) Nanoparticles.” Archives of Toxicology 90 (4): 817–828. doi:10.1007/s00204-015-1493-x.
  • Jeong, J., S. Lee, S. H. Kim, Y. Han, D. K. Lee, J. Y. Yang, J. Jeong, et al. 2016b. “Evaluation of the Dose Metric for Acute Lung Inflammogenicity of Fast-Dissolving Metal Oxide Nanoparticles.” Nanotoxicology 10 (10): 1448–1457. doi:10.1080/17435390.2016.1229518.
  • Kagan, V. E., Y. Y. Tyurina, V. A. Tyurin, N. V. Konduru, A. I. Potapovich, A. N. Osipov, E. R. Kisin, et al. 2006. “Direct and Indirect Effects of Single Walled Carbon Nanotubes on RAW 264.7 Macrophages: Role of Iron.” Toxicology Letters 165 (1): 88–100. doi:10.1016/j.toxlet.2006.02.001.
  • Klaassen, C. D., and J. B. Watkins. 2015. Casarett & Doull's essentials of toxicology. McGraw Hill Professional.
  • Kolosnjaj-Tabi, J., L. Lartigue, Y. Javed, N. Luciani, T. Pellegrino, C. Wilhelm, D. Alloyeau, et al. 2016. “Biotransformations of Magnetic Nanoparticles in the Body.” Nano Today 11 (3): 280–284. doi:10.1016/j.nantod.2015.10.001.
  • Kroll, A., M. H. Pillukat, D. Hahn, and J. Schnekenburger. 2012. “Interference of Engineered Nanoparticles with in Vitro Toxicity Assays.” Archives of Toxicology 86 (7): 1123–1136. doi:10.1007/s00204-012-0837-z.
  • Lee, S., S. H. Hwang, J. Jeong, Y. Han, S. H. Kim, D. K. Lee, H. S. Lee, et al. 2016. “Nickel Oxide Nanoparticles Can Recruit Eosinophils in the Lungs of Rats by the Direct Release of Intracellular Eotaxin.” Particle and Fibre Toxicology 13 (1): 30. doi:10.1186/s12989-016-0142-8.
  • Lee, Y. G., J. Jeong, J. Raftis, and W. S. Cho. 2015. “Determination of Adsorption Affinity of Nanoparticles for Interleukin-8 Secreted from A549 Cells by in Vitro cell-free and cell-based assays.” Journal of Toxicology and Environmental Health A 78 (3): 185–195. doi:10.1080/15287394.2014.955158.
  • Li, R., Z. Ji, C. H. Chang, D. R. Dunphy, X. Cai, H. Meng, H. Zhang, et al. 2014a. “Surface Interactions with Compartmentalized Cellular Phosphates Explain Rare Earth Oxide Nanoparticle Hazard and Provide Opportunities for Safer Design.” ACS Nano 8 (2): 1771–1783. doi:10.1021/nn406166n.
  • Li, R., Z. Ji, H. Qin, X. Kang, B. Sun, M. Wang, C. H. Chang, et al. 2014b. “Interference in Autophagosome Fusion by Rare Earth Nanoparticles Disrupts Autophagic Flux and Regulation of an interleukin-1β producing inflammasome.” ACS Nano 8 (10): 10280–10292. doi:10.1021/nn505002w.
  • Liu, X., S. Sen, J. Liu, I. Kulaots, D. Geohegan, A. Kane, A. A. Puretzky, et al. 2011. “Antioxidant Deactivation on Graphenic Nanocarbon Surfaces.” Small (Weinheim an Der Bergstrasse, Germany) 7 (19): 2775–2785. doi:10.1002/smll.201100651.
  • Lu, S., R. Duffin, C. Poland, P. Daly, F. Murphy, E. Drost, W. MacNee, V. Stone, and K. Donaldson. 2009. “Efficacy of Simple Short-Term in Vitro Assays for Predicting the Potential of Metal Oxide Nanoparticles to Cause Pulmonary Inflammation.” Environmental Health Perspectives 117 (2): 241–247. doi:10.1289/ehp.11811.
  • Mendes, L., M. I. Gini, G. Biskos, I. Colbeck, and K. Eleftheriadis. 2018. “Airborne Ultrafine Particles in a Naturally Ventilated Metro Station: Dominant Sources and Mixing State Determined by Particle Size Distribution and Volatility Measurements.” Environmental Pollution (Barking, Essex : 1987) 239: 82–94. doi:10.1016/j.envpol.2018.03.067.
  • Miranda, R. R., V. Gorshkov, B. Korzeniowska, S. J. Kempf, F. F. Neto, and F. Kjeldsen. 2018. “Co-Exposure to Silver Nanoparticles and Cadmium Induce Metabolic Adaptation in HepG2 Cells.” Nanotoxicology 12 (7): 781–795. doi:10.1080/17435390.2018.1489987.
  • Nymark, P., K. A. Jensen, S. Suhonen, Y. Kembouche, M. Vippola, J. Kleinjans, J. Catalan, et al. 2014. “Free Radical Scavenging and Formation by Multi-Walled Carbon Nanotubes in Cell Free Conditions and in Human Bronchial Epithelial Cells.” Particle and Fibre Toxicology 11: 4. doi:10.1186/1743-8977-11-4.
  • Oberdorster, G. 1995. “Lung Particle Overload: implications for Occupational Exposures to Particles.” Regulatory Toxicology and Pharmacology 21 (1): 123–135. doi:10.1006/rtph.1995.1017.
  • Rushton, E. K., J. Jiang, S. S. Leonard, S. Eberly, V. Castranova, P. Biswas, A. Elder, et al. 2010. “Concept of Assessing Nanoparticle Hazards considering Nanoparticle Dosemetric and chemical/biological response metrics.” Journal of Toxicology and Environmental Health A73 (5): 445–461. doi:10.1080/15287390903489422.
  • Van Ryswyk, K., A. T. Anastasopolos, G. Evans, L. Sun, K. Sabaliauskas, R. Kulka, L. Wallace, et al. 2017. “Metro Commuter Exposures to Particulate Air Pollution and PM2.5-Associated Elements in Three Canadian Cities: The Urban Transportation Exposure Study.” Environmental Science & Technology 51 (10): 5713–5720. doi:10.1021/acs.est.6b05775.
  • Watts, P. C. P., P. K. Fearon, W. K. Hsu, N. C. Billingham, H. W. Kroto, and D. R. M. Walton. 2003. “Carbon Nanotubes as Polymer Antioxidants.” Journal of Materials Chemistry 13 (3): 491–495. doi:10.1039/b211328g.
  • Weagle, C. L., G. Snider, C. Li, A. van Donkelaar, S. Philip, P. Bissonnette, J. Burke, et al. 2018. “Global Sources of Fine Particulate Matter: Interpretation of PM2.5 Chemical Composition Observed by SPARTAN Using a Global Chemical Transport Model.” Environmental Science and Technology 16 (20): 11670–11681. doi:10.1021/acs.est.8b01658.
  • Zhong, L., X. Hu, Z. Cao, H. Wang, Y. Chen, and H. Z. Lian. 2019. “Aggregation and Dissolution of Engineering Nano Ag and ZnO Pretreated with Natural Organic Matters in the Simulated Lung Biological Fluids.” Chemosphere 225: 668–677. doi:10.1016/j.chemosphere.2019.03.080.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.