2,226
Views
11
CrossRef citations to date
0
Altmetric
Articles

Impact of copper oxide particle dissolution on lung epithelial cell toxicity: response characterization using global transcriptional analysis

ORCID Icon, , , , ORCID Icon &
Pages 380-399 | Received 15 Jul 2020, Accepted 18 Dec 2020, Published online: 28 Jan 2021

References

  • Akhtar, M., S. Kumar, H. Alhadlaq, S. Alrokayan, K. Abu-Salah, and M. Ahamed. 2016. “Dose-Dependent Genotoxicity of Copper Oxide Nanoparticles Stimulated by Reactive Oxygen Species in Human Lung Epithelial Cells.” Toxicology and Industrial Health 32 (5): 809–821. doi:10.1177/0748233713511512.
  • Angelé-Martínez, C., K. Nguyen, F. Ameer, J. Anker, and J. Brumaghim. 2017. “Reactive Oxygen Species Generation by Copper(II) Oxide Nanoparticles Determined by DNA Damage Assays and EPR Spectroscopy.” Nanotoxicology 11 (2): 278–288. doi:10.1080/17435390.2017.1293750.
  • Asati, A., S. Santra, C. Kaittanis, and J. Perez. 2010. “Surface-Charge-Dependent Cell Localization and Cytotoxicity of Cerium Oxide Nanoparticles.” ACS Nano 4 (9): 5321–5331. doi:10.1021/nn100816s.
  • Avramescu, M., M. Chénier, H. Gardner, and P. Rasmussen. 2019. “Solubility of Metal Oxide Nanomaterials: Cautionary Notes on Sample Preparation.” Journal of Physics: Conference Series 1323: 012001.
  • Avramescu, M-l, M. Chénier, S. Palaniyandi, and P. E. Rasmussen. 2020. “Dissolution Behaviour of Metal Oxide Nanomaterials in Cell Culture Media vs Distilled Water.” Journal of Nanoparticle Research 22 (8): 222. doi:10.1007/s11051-020-04949-w.
  • Balamurugan, K., and W. Schaffner. 2006. “Copper Homeostasis in Eukaryotes: Teetering on a Tightrope.” Biochimica Et Biophysica Acta (BBA)- Molecular Cell Research 1763 (7): 737–746. doi:10.1016/j.bbamcr.2006.05.001.
  • Benjamini, Y., and Y. Hochberg. 1995. “Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing.” Journal of the Royal Statistical Society: Series B 57 (1): 289–300. doi:10.1111/j.2517-6161.1995.tb02031.x.
  • Boya, P., and G. Kroemer. 2008. “Lysosomal Membrane Permeabilization in Cell Death.” Oncogene 27 (50): 6434–6451. doi:10.1038/onc.2008.310.
  • Bushell, M., S. Beauchemin, F. Kunc, D. Gardner, J. Ovens, F. Toll, D. Kennedy, et al. 2020. “Characterization of Commercial Metal Oxide Nanomaterials: Crystalline Phase, Particle Size and Specific Surface Area.” Nanomaterials 10 (9): 1812. doi:10.3390/nano10091812.
  • Cho, W., R. Duffin, S. Howie, C. Scotton, W. Wallace, W. MacNee, M. Bradley, I. Megson, and K. Donaldson. 2011. “Progressive Severe Lung Injury by Zinc Oxide Nanoparticles; the Role of Zn2+ Dissolution inside Lysosomes.” Particle and Fibre Toxicology 8 (1): 27. doi:10.1186/1743-8977-8-27.
  • Cho, W., R. Duffin, F. Thielbeer, M. Bradley, I. Megson, W. MacNee, C. Poland, C. Tran, and K. Donaldson. 2012. “Zeta Potential and Solubility to Toxic Ions as Mechanisms of Lung Inflammation Caused by Metal/Metal Oxide Nanoparticles.” Toxicological Sciences 126 (2): 469–477. doi:10.1093/toxsci/kfs006.
  • Costa, P., I. Gosens, A. Williams, L. Farcal, D. Pantano, D. Brown, V. Stone, F. Cassee, S. Halappanavar, and B. Fadeel. 2018. “Transcriptional Profiling Reveals Gene Expression Changes Associated with Inflammation and Cell Proliferation following Short-Term Inhalation Exposure to Copper Oxide Nanoparticles.” Journal of Applied Toxicology 38 (3): 385–397. doi:10.1002/jat.3548.
  • Daugaard, M., M. Rohde, and M. Jäättelä. 2007. “The Heat Shock Protein 70 Family: Highly Homologous Proteins with Overlapping and Distinct Functions.” FEBS Letters 581 (19): 3702–3710. doi:10.1016/j.febslet.2007.05.039.
  • de Planque, M., S. Aghdaei, T. Roose, and H. Morgan. 2011. “Electrophysiological Characterization of Membrane Disruption by Nanoparticles.” ACS Nano 5 (5): 3599–3606. doi:10.1021/nn103320j.
  • Decan, N., D. Wu, A. Williams, S. Bernatchez, M. Johnston, M. Hill, and S. Halappanavar. 2016. “Characterization of in Vitro Genotoxic, Cytotoxic and Transcriptomic Responses following Exposures to Amorphous Silica of Different Sizes.” Mutation Research. Genetic Toxicology and Environmental Mutagenesis 796: 8–22. doi:10.1016/j.mrgentox.2015.11.011.
  • Foster, K., M. Yazdanian, and K. Audus. 2001. “Microparticulate Uptake Mechanisms of in-Vitro Cell Culture Models of the Respiratory Epithelium.” The Journal of Pharmacy and Pharmacology 53 (1): 57–66. doi:10.1211/0022357011775190.
  • Gawande, M., A. Goswami, F. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, and R. Varma. 2016. “Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis.” Chemical Reviews 116 (6): 3722–3811. doi:10.1021/acs.chemrev.5b00482.
  • Gosens, I., F. Cassee, M. Zanella, L. Manodori, A. Brunelli, A. Costa, B. Bokkers, et al. 2016. “Organ Burden and Pulmonary Toxicity of Nano-Sized Copper (II) Oxide Particles after Short-Term Inhalation Exposure.” Nanotoxicology 10 (8): 1084–1095. doi:10.3109/17435390.2016.1172678.
  • Grigore, M., E. Biscu, A. Holban, M. Gestal, and A. Grumezescu. 2016. “Methods of Synthesis, Properties and Biomedical Applications of CuO Nanoparticles.” Pharmaceuticals 9 (4): 75. doi:10.3390/ph9040075.
  • Halappanavar, S., L. Rahman, J. Nikota, S. Poulsen, Y. Ding, P. Jackson, H. Wallin, O. Schmid, U. Vogel, and A. Williams. 2019. “Ranking of Nanomaterial Potency to Induce Pathway Perturbations Associated with Lung Responses.” Nanoimpact 14: 100158. doi:10.1016/j.impact.2019.100158.
  • Halappanavar, S., A. Saber, N. Decan, K. Jensen, D. Wu, N. Jacobsen, C. Guo, et al. 2015. “Transcriptional Profiling Identifies Physicochemical Properties of Nanomaterials That Are Determinants of the in Vivo Pulmonary Response.” Environmental and Molecular Mutagenesis 56 (2): 245–264. doi:10.1002/em.21936.
  • Hristozov, D., L. Pizzol, G. Basei, A. Zabeo, A. Mackevica, S. Hansen, I. Gosens, et al. 2018. “Quantitative Human Health Risk Assessment along the Lifecycle of Nano-Scale Copper-Based Wood Preservatives.” Nanotoxicology 12 (7): 747–765. doi:10.1080/17435390.2018.1472314.
  • Hufnagel, M., S. Schoch, J. Wall, B. Strauch, and A. Hartwig. 2020. “Toxicity and Gene Expression Profiling of Copper- and Titanium-Based Nanoparticles Using Air-Liquid Interface Exposure.” Chemical Research in Toxicology 33 (5): 1237–1249. doi:10.1021/acs.chemrestox.9b00489.
  • Ivask, A., K. Scheckel, P. Kapruwan, V. Stone, H. Yin, N. Voelcker, and E. Lombi. 2017. “Complete Transformation of ZnO and CuO Nanoparticles in Culture Medium and Lymphocyte Cells during Toxicity Testing.” Nanotoxicology 11 (2): 150–156. doi:10.1080/17435390.2017.1282049.
  • Jacobsen, N., P. White, J. Gingerich, P. Møller, A. Saber, G. Douglas, U. Vogel, and H. Wallin. 2011. “Mutation Spectrum in FE1-MUTATMMouse Lung Epithelial Cells Exposed to Nanoparticulate Carbon Black.” Environmental and Molecular Mutagenesis 52 (4): 331–337. doi:10.1002/em.20629.
  • Jeong, J., S. Kim, S. Lee, D. Lee, Y. Han, S. Jeon, and W. Cho. 2018. “Differential Contribution of Constituent Metal Ions to the Cytotoxic Effects of Fast-Dissolving Metal-Oxide Nanoparticles.” Frontiers in Pharmacology 9: 15. doi:10.3389/fphar.2018.00015.
  • Karlsson, H. L., P. Cronholm, J. Gustafsson, and L. Möller. 2008. “Copper Oxide Nanoparticles Are Highly Toxic: A Comparison between Metal Oxide Nanoparticles and Carbon Nanotubes.” Chemical Research in Toxicology 21 (9): 1726–1732. doi:10.1021/tx800064j.
  • Kerr, K., and G. Churchill. 2001. “Experimental Design for Gene Expression Microarrays.” Biostatistics 2 (2): 183–201. doi:10.1093/biostatistics/2.2.183.
  • Labib, S., A. Williams, C. Guo, K. Leingartner, V. Arlt, H. Schmeiser, L. Yauk, C. A. P. White, and S. Halappanavar. 2016. “Comparative Transcriptomic Analyses to Scrutinize the Assumption That Genotoxic PAHs Exert Effects via a Common Mode of Action.” Archives of Toxicology 90 (10): 2461–2480. doi:10.1007/s00204-015-1595-5.
  • Laha, D., A. Pramanik, J. Maity, A. Mukherjee, P. Pramanik, A. Laskar, and P. Karmakar. 2014. “Interplay between Autophagy and Apoptosis Mediated by Copper Oxide Nanoparticles in Human Breast Cancer Cells MCF7.” Biochimica et Biophysica Acta 1840 (1): 1–9. doi:10.1016/j.bbagen.2013.08.011.
  • Lai, X., Y. Wei, H. Zhao, S. Chen, X. Bu, F. Lu, D. Qu, L. Yao, J. Zheng, and J. Zhang. 2015. “The Effect of Fe2O3 and ZnO Nanoparticles on Cytotoxicity and Glucose Metabolism in Lung Epithelial Cells.” Journal of Applied Toxicology 35 (6): 651–664. doi:10.1002/jat.3128.
  • Lai, X., H. Zhao, Y. Zhang, K. Guo, Y. Xu, S. Chen, and J. Zhang. 2018. “Intranasal Delivery of Copper Oxide Nanoparticles Induces Pulmonary Toxicity and Fibrosis in C57BL/6 Mice.” Scientific Reports 8 (1): 4499. doi:10.1038/s41598-018-22556-7.
  • Leroueil, P., S. Berry, K. Duthie, G. Han, V. Rotello, D. McNerny, J. Baker, B. Orr, and M. Banaszak Holl. 2008. “Wide Varieties of Cationic Nanoparticles Induce Defects in Supported Lipid Bilayers.” Nano Letters 8 (2): 420–424. doi:10.1021/nl0722929.
  • Midander, K., P. Cronholm, H. Karlsson, K. Elihn, L. Möller, C. Leygraf, and I. Wallinder. 2009. “Surface Characteristics, Copper Release, and Toxicity of Nano- and Micrometer-Sized Copper and Copper(II) Oxide Particles: A Cross-Disciplinary Study.” Small 5 (3): 389–399. doi:10.1002/smll.200801220.
  • Mirshafiee, V., B. Sun, C. Chang, Y. Liao, W. Jiang, J. Jiang, X. Liu, X. Wang, T. Xia, and A. Nel. 2018. “Toxicological Profiling of Metal Oxide Nanoparticles in Liver Context Reveals Pyroptosis in Kupffer Cells and Macrophages versus Apoptosis in Hepatocytes.” ACS Nano 12 (4): 3836–3852. doi:10.1021/acsnano.8b01086.
  • Moschini, E., M. Gualtieri, M. Colombo, U. Fascio, M. Camatini, and P. Mantecca. 2013. “The Modality of Cell-Particle Interactions Drives the Toxicity of Nanosized CuO and TiO2 in Human Alveolar Epithelial Cells.” Toxicology Letters 222 (2): 102–116. doi:10.1016/j.toxlet.2013.07.019.
  • Ndika, J., M. Ilves, I. M. Kooter, M. Gröllers‐Mulderij, E. Duistermaat, P. C. Tromp, F. Kuper, et al. 2020. “Mechanistic Similarities between 3D Human Bronchial Epithelium and Mice Lung, Exposed to Copper Oxide Nanoparticles, Support Non‐Animal Methods for Hazard Assessment.” Small 16 (36): 2000527. doi:10.1002/smll.202000527.
  • Organization for Economic Co-operation and Development. 1995. Test No. 105: Water Solubility. OECD Guidelines for the Testing of Chemicals. Section 1. Paris, France: OECD Publishing.
  • Prohaska, J. 2008. “Role of Copper Transporters in Copper Homeostasis.” The American Journal of Clinical Nutrition 88 (3): 826S–829S. doi:10.1093/ajcn/88.3.826S.
  • Rahman, L., D. Wu, M. Johnston, A. William, and S. Halappanavar. 2017. “Toxicogenomics Analysis of Mouse Lung Responses following Exposure to Titanium Dioxide Nanomaterials Reveal Their Disease Potential at High Doses.” Mutagenesis 32 (1): 59–76. doi:10.1093/mutage/gew048.
  • Schulz, M., A. Olubummo, and W. Binder. 2012. “Beyond the Lipid-Bilayer: Interaction of Polymers and Nanoparticles with Membranes.” Soft Matter 8 (18): 4849. doi:10.1039/c2sm06999g.
  • Searle, S., F. Speed, and G. Milliken. 1980. “Population Marginal Means in the Linear Model: An Alternative to Least Squares Means.” The American Statistician 34 (4): 216–221. doi:10.2307/2684063.
  • Semisch, A., J. Ohle, B. Witt, and A. Hartwig. 2014. “Cytotoxicity and Genotoxicity of Nano - and Microparticulate Copper Oxide: Role of Solubility and Intracellular Bioavailability.” Particle and Fibre Toxicology 11 (1): 10. doi:10.1186/1743-8977-11-10.
  • Singh, S., T. Shi, R. Duffin, C. Albrecht, D. van Berlo, D. Höhr, B. Fubini, et al. 2007. “Endocytosis, Oxidative Stress and IL-8 Expression in Human Lung Epithelial Cells upon Treatment with Fine and Ultrafine TiO2: Role of the Specific Surface Area and of Surface Methylation of the Particles.” Toxicology and Applied Pharmacology 222 (2): 141–151. doi:10.1016/j.taap.2007.05.001.
  • Sisler, J., R. Li, W. McKinney, R. Mercer, Z. Ji, T. Xia, X. Wang, et al. 2015. “Differential Pulmonary Effects of CoO and La2O3 Metal Oxide Nanoparticle Responses during Aerosolized Inhalation in Mice.” Particle and Fibre Toxicology 13 (1): 42. doi:10.1186/s12989-016-0155-3.
  • Poulsen, S. S., N. Jacobsen, S. Labib, D. Wu, M. Husain, A. Williams, P. Bøgelund, et al. 2013. “Transcriptomic Analysis Reveals Novel Mechanistic Insight into Murine Biological Responses to Multi-Walled Carbon Nanotubes in Lungs and Cultured Lung Epithelial Cells.” PLoS One 8 (11): e80452. doi:10.1371/journal.pone.0080452.
  • Poulsen, S. S., A. T. Saber, A. Williams, O. Andersen, C. Købler, R. Atluri, M. E. Pozzebon, et al. 2015. “MWCNTs of Different Physicochemical Properties Cause Similar Inflammatory Responses, but Differences in Transcriptional and Histological Markers of Fibrosis in Mouse Lungs.” Toxicology and Applied Pharmacology 284 (1): 16–32. doi:10.1016/j.taap.2014.12.011.
  • Strauch, B., W. Hubele, and A. Hartwig. 2020. “Impact of Endocytosis and Lysosomal Acidification on the Toxicity of Copper Oxide Nano- and Microsized Particles: Uptake and Gene Expression Related to Oxidative Stress and the DNA Damage Response.” Nanomaterials 10 (4): 679. doi:10.3390/nano10040679.
  • Strauch, B., R. Niemand, N. Winkelbeiner, and A. Hartwig. 2017. “Comparison between Micro- and Nanosized Copper Oxide and Water Soluble Copper Chloride: Interrelationship between Intracellular Copper Concentrations, Oxidative Stress and DNA Damage Response in Human Lung Cells.” Particle and Fibre Toxicology 14 (1): 28. doi:10.1186/s12989-017-0209-1.
  • Sun, T., Y. Yan, Y. Zhao, F. Guo, and C. Jiang. 2012. “Copper Oxide Nanoparticles Induce Autophagic Cell Death in A549 Cells.” PLoS One 7 (8): e43442. doi:10.1371/journal.pone.0043442.
  • Titma, T., R. Shimmo, J. Siigur, and A. Kahru. 2016. “Toxicity of Antimony, Copper, Cobalt, Manganese, Titanium and Zinc Oxide Nanoparticles for the Alveolar and Intestinal Epithelial Barrier Cells in Vitro.” Cytotechnology 68 (6): 2363–2377. doi:10.1007/s10616-016-0032-9.
  • Tossavainen, A. 1976. “Metal Fumes in Foundries.” Scandinavian Journal of Work, Environment & Health 2 (1): 42–49. doi:10.5271/sjweh.2833.
  • Vance, M., T. Kuiken, E. Vejerano, S. McGinnis, M. Hochella, D. Rejeski, and M. Hull. 2015. “Nanotechnology in the Real World: Redeveloping the Nanomaterial Consumer Products Inventory.” Beilstein Journal of Nanotechnology 6: 1769–1780. doi:10.3762/bjnano.6.181.
  • White, P., G. Douglas, J. Gingerich, C. Parfett, P. Shwed, V. Seligy, L. Soper, et al. 2003. “Development and Characterization of a Stable Epithelial Cell Line from Muta Mouse Lung.” Environmental and Molecular Mutagenesis 42 (3): 166–184. doi:10.1002/em.10185.
  • Wongrakpanich, A., I. Mudunkotuwa, S. Geary, A. Morris, K. Mapuskar, D. Spitz, V. Grassian, and A. Salem. 2016. “Size-Dependent Cytotoxicity of Copper Oxide Nanoparticles in Lung Epithelial Cells.” Environmental Science. Nano 3 (2): 365–374. doi:10.1039/C5EN00271K.
  • Wu, H., K. Kerr, X. Cui, and G. Churchill. 2003. “MAANOVA: A Software Package for the Analysis of Spotted cDNA Microarray Experiments.” In The Analysis of Gene Expression Data. Statistics for Biology and Health, edited by G. Parmigiani, E. Garrett, R. Irizarry and S. Zeger, 314–341. New York, NY: Springer.
  • Zhang, H., Z. Ji, T. Xia, H. Meng, C. Low-Kam, R. Liu, S. Pokhrel, et al. 2012. “Use of Metal Oxide Nanoparticle Band Gap to Develop a Predictive Paradigm for Oxidative Stress and Acute Pulmonary Inflammation.” ACS Nano 6 (5): 4349–4368. doi:10.1021/nn3010087.
  • Zhang, J., Z. Zou, B. Wang, G. Xu, Q. Wu, Y. Zhang, Z. Yuan, X. Yang, and C. Yu. 2018. “Lysosomal Deposition of Copper Oxide Nanoparticles Triggers HUVEC Cells Death.” Biomaterials 161: 228–239. doi:10.1016/j.biomaterials.2018.01.048.
  • Zhu, Y., J. Eaton, and C. Li. 2012. “Titanium Dioxide (TiO2) Nanoparticles Preferentially Induce Cell Death in Transformed Cells in a Bak/Bax-Independent Fashion.” PLoS One 7 (11): e50607. doi:10.1371/journal.pone.0050607.