251
Views
0
CrossRef citations to date
0
Altmetric
Articles

Utilizing literature-based rodent toxicology data to derive potency estimates for quantitative risk assessment

, , &
Pages 740-760 | Received 08 Feb 2021, Accepted 13 Apr 2021, Published online: 04 Jun 2021

References

  • ARA. 2015. Multiple-Path Particle Dosimetry Model (MPPD 3.04). Raleigh, NC: Applied Research Associates, Inc.
  • ATL. 2015. “Literature Search Protocol: Hazard and Risk Evaluations of Engineered Nanomaterials.” Report submitted to the National Institute for Occupational Safety and Health (NIOSH) by Advanced Technologies and Laboratories under project for Dataset Development for Hazard and Risk Evaluations of Engineered Nanomaterials Based on Toxicology Literature. NIOSH Contract No. Order No. 200-2015-F-62950, September 11.
  • Barosova, H., B. B. Karakocak, D. Septiadi, A. Petri-Fink, V. Stone, and B. Rothen-Rutishauser. 2020. “An in Vitro Lung System to Assess the Proinflammatory Hazard of Carbon Nanotube Aerosols.” International Journal of Molecular Sciences 21 (15): 5335. doi:10.3390/ijms21155335.
  • Bates, M. E., J. M. Keisler, N. P. Zussblatt, K. J. Plourde, and B. A. Wender. 2016. “Balancing Research and Funding Using Value of Information and Portfolio Tools for Nanomaterial Risk Classification.” Nature Nanotechnology 11: 198–203. doi:10.1038/NNANO.2015.249.
  • Bokkers, B. G., and W. Slob. 2007. “Deriving a Data-Based Interspecies Assessment Factor Using the NOAEL and the Benchmark Dose Approach.” Critical Reviews in Toxicology 37 (5): 355–373. doi:10.1080/10408440701249224.
  • Bonner, J. C., R. M. Silva, A. J. Taylor, J. M. Brown, S. C. Hilderbrand, V. Castranova, D. Porter, et al. 2013. “Interlaboratory Evaluation of Rodent Pulmonary Responses to Engineered Nanomaterials: The NIEHS Nano GO Consortium.” Environmental Health Perspectives 121 (6): 676–682. doi:10.1289/ehp.1205693.
  • Bos, P. M. J., I. Gosens, L. Geraets, C. Delmaar, and F. R. Cassee. 2019. “Pulmonary Toxicity in Rats following Inhalation Exposure to Poorly Soluble Particles: The Issue of Impaired Clearance and the Relevance for Human Health Hazard and Risk Assessment.” Regulatory Toxicology and Pharmacology 109: 104498. doi:10.1016/j.yrtph.2019.104498.
  • Braakuis, H. M., M. V. D. Z. Park, I. Gosens, W. H. De Jong, and F. R. Cassee. 2014. “Physicochemical Characteristics of Nanomaterials That Affect Pulmonary Inflammation.” Particle and Fibre Toxicology 11: 18. doi:10.1186/1743-8977-11-18.
  • Brzicova, T., J. Sikorova, A. Milcova, K. Vrbova, J. Klema, P. Pikal, and P. Rossner. 2019. “Nano-TiO2 Stability in Medium and Size as Important Factors of Toxicity in Macrophage-like Cells.” Toxicology in Vitro 54: 178–188. doi:10.1016/j.tiv.2018.09.019.
  • Crump, K. S. 1984. “A New Method for Determining Allowable Daily Intakes.” Fundamental and Applied Toxicology 4: 854–871. doi:10.1093/toxsci/4.5.854.
  • Dankovic, D. A., B. D. Naumann, A. Maier, M. L. Dourson, and L. S. Levy. 2015. “The Scientific Basis of Uncertainty Factors Used in Setting Occupational Exposure Limits.” Journal of Occupational and Environmental Hygiene 12 (sup1): S55–S68. doi:10.1080/15459624.2015.1060325.
  • Davis, J. A., J. S. Gift, and Q. J. Zhao. 2011. “Introduction to Benchmark Dose Methods and U.S. EPA’s Benchmark Dose Software (BMDS) Version 2.1.1.” Toxicology and Applied Pharmacology 254 (2): 181–191. doi:10.1016/j.taap.2010.10.016.
  • Donaldson, K., P. J. Borm, G. Oberdörster, K. E. Pinkerton, V. Stone, and C. L. Tran. 2008. “Concordance between in Vitro and in Vivo Dosimetry in the Proinflammatory Effects of Low-Toxicity, Low-Solubility Particles: The Key Role of the Proximal Alveolar Region.” Inhalation Toxicology 20: 53–62. doi:10.1080/08958370701758742.
  • Drew, N. M., E. D. Kuempel, Y. Pei, and F. Yang. 2017. “A Quantitative Framework to Group Nanoscale and Microscale Particles by Hazard Potency to Derive Occupational Exposure Limits: proof of Concept Evaluation.” Regulatory Toxicology and Pharmacology 89: 253–267. doi:https://doi.org/10.1016/j.yrtph.2017.08.003.
  • ECHA. 2017. Read-Across Assessment Framework (RAAF). ECHA-17-R-01-EN. Helsinki, Finland: European Chemicals Agency (ECHA).
  • Efron, B., and R. Tibshirani. 1986. “Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy.” Statistical Science 1 (1): 54–75. doi:10.1214/ss/1177013815.
  • EFSA Scientific Community. 2017. “Update: Use of the Benchmark Dose Approach in Risk Assessment.” EFSA Journal 15 (1): 4658. doi:10.2903/j.efsa.2017.4658.
  • Fraser, K., V. Kodali, N. Yanamala, M. E. Birch, L. Cena, G. Casuccio, K. Bunker, et al. 2020. “Physicochemical Characterization and Genotoxicity of the Broad Class of Carbon Nanotubes and Nanofibers Used or Produced in U.S. Facilities.” Particle and Fibre Toxicology 17: 62. doi:10.1186/s12989-020-00392-w.
  • Fujita, K., M. Fukuda, S. Endoh, J. Maru, H. Kato, A. Nakamura, and K. Honda. 2015. “Size Effects of Single-Walled Carbon Nanotubes on in Vivo and in Vitro Pulmonary Toxicity.” Inhalation Toxicology 27 (4): 207–223. doi::10.3109/08958378.2015.1026620.
  • Fujita, K., M. Fukuda, S. Endoh, J. Maru, H. Kato, A. Nakamura, and K. Honda. 2016. “Pulmonary and Pleural Inflammation after Intratracheal Instillation of Short Single-Walled and Multi-Walled Carbon Nanotubes.” Toxicology Letters 257: 23–37. doi:10.1016/j.toxlet.2016.05.025.
  • Furxhia, I., F. Murphy, M. Mullins, A. Arvanitis, and C. A. Poland. 2020. “Nanotoxicology Data for in Silico Tools: A Literature Review.” Nanotoxicology 14 (5): 612–637. doi:10.1080/17435390.2020.1729439.
  • Gernand, J. M., and E. A. Casman. 2014. “A Meta-Analysis of Carbon Nanotube Pulmonary Toxicity Studies—How Physical Dimensions and Impurities Affect the Toxicity of Carbon Nanotubes.” Risk Analysis 34 (3): 583–597. doi:10.1111/risa.12109.
  • Halappanavar, S., J. D. Ede, I. Mahapatra, H. F. Krug, E. D. Kuempel, I. Lynch, R. J. Vandebriel, and J. A. Shatkin. 2020. “A Methodology for Developing Key Events to Advance Nanomaterial-Relevant Adverse Outcome Pathways to Inform Risk Assessment.” Nanotoxicology 15 (3): 289–224. doi:10.1080/17435390.2020.1851419.
  • Halappanavar, S., S. van den Brule, P. Nymark, L. Gaté, C. Seidel, S. Valentino, V. Zhernovkov, et al. 2020. “Adverse Outcome Pathways as a Tool for the Design of Testing Strategies to Support the Safety Assessment of Emerging Advanced Materials at the Nanoscale.” Particle and Fibre Toxicology 17 (1): 16. doi:10.1186/s12989-020-00344-4.
  • Hamilton, R. F., Z. Wu, S. Mitra, P. K. Shaw, A. Holian. 2013. “Effect of MWCNT Size, Carboxylation, and Purification on in Vitro and in Vivo Toxicity, Inflammation and Lung Pathology.” Particle and Fibre Toxicology 10 (1): 57. doi:10.1186/1743-8977-10-57.
  • Hamilton, R. F., Z. Wu, S. Mitra, P. K. Shaw, and A. Holian. 2018. “Length, but Not Reactive Edges, of Cup-Stack MWCNT is Responsible for Toxicity and Acute Lung Inflammation.” Toxicologic Pathology 46 (1): 62–74. doi:10.1177/0192623317732303.
  • ICRP. 2002. Annals of the ICRP (The International Commission on Radiological Protection). In: Basic anatomical and physiological data for use in radiological protection: reference values, edited by Valentin, J. (ICRP Publication 89). Oxford, U.K.: Pergamon.
  • ICRP. 2015. “Occupational Intakes of Radionuclides: Part 1. The International Commission on Radiological Protection (ICRP) Publication 130.” Annals of the ICRP 44 (2): 59–74.
  • ISO. 2016. “Nanotechnologies — Overview of Available Frameworks for the Development of Occupational Exposure Limits and Bands for Nano-Objects and Their Aggregates and Agglomerates (NOAAs).” International Organization for Standardization Technical Report. ISO/TR 18637, Geneva, Switzerland: ISO, November 21.
  • Karlsson, H. L., P. Cronholm, J. Gustafsson, and L. Moller. 2008. “Copper Oxide Nanoparticles Are Highly Toxic: A Comparison between Metal Oxide Nanoparticles and Carbon Nanotubes.” Chemical Research in Toxicology 21 (9): 1726–1732. doi:10.1021/tx800064j.
  • Kobayashi, N., M. Naya, S. Endoh, J. Maru, K. Yamamoto, and J. Nakanishi. 2009. “Comparative Pulmonary Toxicity Study of nano-TiO(2) Particles of Different Sizes and Agglomerations in Rats: different Short- and Long-Term Post-Instillation Results.” Toxicology 264 (1–2): 110–118. doi:10.1016/j.tox.2009.08.002.
  • Kuempel, E. D., V. Castranova, C. L. Geraci, and P. A. Schulte. 2012. “Development of Risk-Based Nanomaterial Groups for Occupational Exposure Control.” Journal of Nanoparticle Research 14: 1029. doi:10.1007/s11051-012-1029-8.
  • Lamon, L., D. Asturiol, A. Richarz, E. Joossens, R. Graepel, K. Aschberger, and A. Worth. 2018. “Grouping of Nanomaterials to Read-across Hazard Endpoints: From Data Collection to Assessment of the Grouping Hypothesis by Application of Chemoinformatic Techniques.” Particle and Fibre Toxicology 15: 37. doi:10.1186/s12989-018-0273-1.
  • Lampe, B. J., E. Fuller, and S. P. Kuppusamy. 2018. “A Quantitative Comparison of Points of Departure between 28-Day and 90-Day Repeated Dose Studies with a Proposed Extrapolation Factor.” Regulatory Toxicology and Pharmacology 92: 189–200. doi:10.1016/j.yrtph.2017.12.007.
  • Landsiedel, R., L. Ma-Hock, K. Wiench, W. Wohlleben, and U. G. Sauer. 2017. “Safety Assessment of Nanomaterials Using an Advanced Decision-Making Framework, the DF4nanoGrouping.” Journal of Nanoparticle Research 19 (5): 171. doi:10.1007/s11051-017-3850-6.
  • Lanone, S., F. Rogerieux, J. Geys, A. Dupont, E. Maillot-Marechal, J. Boczkowski, and P. Hoet. 2009. “Comparative Toxicity of 24 Manufactured Nanoparticles in Human Alveolar Epithelial and Macrophage Cell Lines.” Particle and Fibre Toxicology 6: 14. doi:10.1186/1743-8977-6-14.
  • Mercer, R. R., A. F. Hubbs, J. F. Scabilloni, L. Wang, L. A. Battelli, D. Schwegler-Berry, V. Castranova, and D. W. Porter. 2010. “Distribution and Persistence of Pleural Penetrations by Multi-Walled Carbon Nanotubes.” Particle and Fibre Toxicology 7: 28. doi:10.1186/1743-8977-7-28.
  • Mihalache, R., J. Verbeek, H. Graczyk, V. Murashov, and P. van Broekhuizen. 2017. “Occupational Exposure Limits for Manufactured Nanomaterials, A Systematic Review.” Nanotoxicology 11 (1): 7–13. doi:10.1080/17435390.2016.1262920.
  • NAS. 1983. Risk Assessment in the Federal Government: Managing the Process. Committee on the Institutional Means for Assessment of Risks to Public Health, Commission on Life Sciences, National Research Council, National Academy of Sciences. Washington, DC: National Academies Press.
  • NAS. 2007. Toxicity Testing in the 21st Century: A Vision and a Strategy. Washington, DC: National Academy of Sciences, National Academies Press.
  • NAS. 2009. Science and Decisions: Advancing Risk Assessment. Committee on Improving Risk Analysis Approaches Used by the U.S. EPA, Board on Environmental Studies and Toxicology, Division on Earth and Life Studies, National Research Council, National Academy of Sciences. Washington, DC: National Academies Press.
  • NAS. 2017. Using 21st Century Science to Improve Risk-Related Evaluation. Washington, DC: National Academy of Sciences, National Academies Press.
  • Nel, A. E., E. Nasser, H. Godwin, D. Avery, T. Bahadori, L. Bergeson, E. Beryt, et al. 2013. “A Multi-Stakeholder Perspective on the Use of Alternative Test Strategies for Nanomaterial Safety Assessment.” ACS Nano. 7 (8): 6422–6433. doi:10.1021/nn4037927.
  • NIOSH. 2011. Current Intelligence Bulletin 63: Occupational Exposure to Titanium Dioxide. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health (DHHS (NIOSH) Publication No. 2011-160).
  • NIOSH. 2013. Current Intelligence Bulletin 65: Occupational Exposure to Carbon Nanotubes and Nanofibers. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health (DHHS (NIOSH) Publication No. 2013-14).
  • NIOSH. 2019. Technical Report: The NIOSH occupational exposure banding process for chemical risk management. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health (DHHS (NIOSH) Publication No. 2019-132, NIOSH).
  • NIOSH. 2020. Current Intelligence Bulletin 69: NIOSH Practices in Occupational Risk Assessment. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health (DHHS (NIOSH) Publication No. 2020-106 (revised 03/2020).
  • Oberdörster, G., A. Maynard, K. Donaldson, V. Castranova, J. Fitzpatrick, K. Ausman, J. Carter, et al. 2005. “Principles for Characterizing the Potential Human Health Effects from Exposure to Nanomaterials: elements of a Screening Strategy.” Particle and Fibre Toxicology 2 (1): 8–35. doi:10.1186/1743-8977-2-8.
  • OECD. 2014a. “OECD Series on the Safety of Manufactured Nanomaterials, No. 41.” Report of the OECD expert meeting on the physico-chemical properties of manufactured nanomaterials and test guidelines, OECD, Paris, France, pp. 56, ENV/JM/MONO (2014)15.
  • OECD. 2014b. Guidance on Grouping of Chemicals. 2nd ed. (Series on Testing and Assessment, no. 194, ENV/JM/MONO(2014)4). Paris, France: Organization for Economic Cooperation and Development, Environmental Health and Safety Publications.
  • OECD. 2016. Alternative Testing Strategies in Risk Assessment of Manufactured Nanomaterials: Current State of Knowledge and Research Needs to Advance their Use (Series on the Safety of Manufactured Nanomaterials, no. 80, ENV/JM/MONO(2016)63). Paris, France: Organization for Economic Cooperation and Development, Environmental Health and Safety Publications.
  • Piccinno, F., F. Gottschalk, S. Seeger, and B. Nowack. 2012. “Industrial Production Quantities and Uses of Ten Engineered Nanomaterials in Europe and the World.” Journal of Nanoparticle Research 14 (9): 1109. doi:10.1007/s11051-012-1109-9.
  • R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Ramchandran, V., and J. M. Gernand. 2019. “A Dose-Response-Recovery Clustering Algorithm for Categorizing Carbon Nanotube Variants into Toxicologically Distinct Groups.” Computational Toxicology 11: 25–32. doi:10.1016/j.comtox.2019.02.003.
  • Ramchandran, V., and J. M. Gernand. 2020. “Examining the in Vivo Pulmonary Toxicity of Engineered Metal Oxide Nanomaterials Using a Genetic Algorithm-Based Dose-Response-Recovery Clustering Method.” Computational Toxicology 13: 100113. doi:10.1016/j.comtox.2019.100113.
  • Rao, G. V., S. Tinkle, D. N. Weissman, J. M. Antonini, M. L. Kashon, R. Salmen, L. A. Battelli, P. A. Willard, M. D. Hoover, and A. F. Hubbs. 2003. “Efficacy of a Technique for Exposing the Mouse Lung to Particles Aspirated from the Pharynx.” Journal of Toxicology and Environmental Health Part A 66 (15): 1441–1452. doi:10.1080/15287390306417.
  • Rasmussen, K., H. Rauscher, A. Mech, J. Riego Sintes, D. Gilliland, M. González, P. Kearns, et al. 2018. “Physico-Chemical Properties of Manufactured nanomaterials - Characterisation and Relevant Methods. An Outlook Based on the OECD Testing Programme.” Regulatory Toxicology Pharmacology 92: 8–28. doi:10.1016/j.yrtph.2017.10.019.
  • Rodriguez-Ibarra, C., A. Deciga-Alcaraz, O. Ispanixtlahuatl-Meraz, E. I. Medina-Reyes, N. L. Delgado-Buenrostro, and Y. I. Chirino. 2020. “International Landscape of Limits and Recommendations for Occupational Exposure to Engineered Nanomaterials.” Toxicology Letters 322: 111–119. doi:10.1016/j.toxlet.2020.01.016.
  • Rushton, E. K., J. Jiang, S. S. Leonard, S. Eberly, V. Castranova, P. Biswas, A. Elder, et al. 2010. “Concept of Assessing Nanoparticle Hazards considering Nanoparticle Dosemetric and Chemical/Biological Response Metrics.” Journal of Toxicology and Environmental Health Part A 73 (5): 445–461. doi:10.1080/15287390903489422.
  • Sager, T. M., C. Kommineni, and V. Castranova. 2008. “Pulmonary Response to Intratracheal Instillation of Ultrafine versus Fine Titanium Dioxide: role of Particle Surface Area.” Particle and Fibre Toxicology 5: 17. doi:10.1186/1743-8977-5-17.
  • Schulte, P. A., V. Leso, M. Niang, et al. 2019. “Current State of Knowledge on the Health Effects of Engineered Nanomaterials in Workers: A Systematic Review of Human Studies and Epidemiological Investigations.” Scandinavian Journal of Work, Environment and Health 45 (3): 217–238. doi:10.5271/sjweh.3800.
  • Sheehan, B., F. Murphy, M. Mullins, I. Furxhi, A. Costa, F. Simeone, and P. Mantecca. 2018. “Hazard Screening Methods for Nanomaterials: A Comparative Study.” International Journal of Molecular Sciences 19 (3): 649. Available from: 10.3390/ijms19030649.
  • Stoehr, L. C., E. Gonzalez, A. Stampfl, E. Casals, A. Duschl, V. Puntes, and G. J. Oostingh. 2011. “Shape Matters: effects of Silver Nanospheres and Wires on Human Alveolar Epithelial Cells.” Particle and Fibre Toxicology 8 (1): 36. doi:10.1186/1743-8977-8-36.
  • Stueckle, T. A., D. C. Davidson, R. Derk, P. Wang, S. Friend, D. Schwegler-Berry, and L. Wang. 2017. “Effect of Surface Functionalizations of Multi-Walled Carbon Nanotubes on Neoplastic Transformation Potential in Primary Human Lung Epithelial Cells.” Nanotoxicology 11 (5): 613–624. doi:10.1080/17435390.2017.1332253.
  • U.S. EPA. 2012. Benchmark Dose Technical Guidance (EPA/100/R-12/001). Washington, DC: U.S. Environmental Protection Agency.
  • U.S. EPA. 2014. Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology (EPA/600/R-14/004). Washington, DC: U.S. Environmental Protection Agency, National Center for Environmental Assessment, Office of Research and Development.
  • U.S. EPA. 1994. Methods for Derivation of Inhalation Reference Concentrations and Application of Inhalation Dosimetry (EPA/600/8-9Q/066f). Washington, DC: U.S. Environmental Protection Agency.
  • Valavanidis, A. V., and T. Vlachogianni. 2016. “Engineered Nanomaterials for Pharmaceutical and Biomedical Products New Trends, Benefits and Opportunities.” Pharmaceutical Bioprocessing 4 (1): 013–024.
  • WHO. 2017. Guidelines on Protecting Workers from Potential Risks of Manufactured Nanomaterials. Geneva: World Health Organization.
  • Xia, T., R. F. Hamilton, J. C. Bonner, E. D. Crandall, A. Elder, F. Fazlollahi, T. A. Girtsman, et al. 2013. “Interlaboratory Evaluation of in Vitro Cytotoxicity and Inflammatory Responses to Engineered Nanomaterials: The NIEHS Nano GO Consortium.” Environmental Health Perspectives 121 (6): 683–690. doi:10.1289/ehp.1306561.
  • Yu, Q., H. Wang, Q. Peng, Y. Li, Z. Liu, and M. Li. 2017. “Different Toxicity of Anatase and Rutile TiO2 Nanoparticles on Macrophages: Involvement of Difference in Affinity to Proteins and Phospholipids.” Journal of Hazardous Materials 335: 125–134. doi:10.1016/j.jhazmat.2017.04.026.
  • Zhang, H., Z. Ji, T. Xia, H. Meng, C. Low-Kam, R. Liu, S. Pokhrel, et al. 2012. “Use of Metal Oxide Nanoparticle Band Gap to Develop a Predictive Paradigm for Oxidative Stress and Acute Pulmonary Inflammation.” ACS NA 6 (5): 4349–4368. doi:10.1021/nn3010087.
  • Zhang, T., T. Meng, L. Kong, H. Li, T. Zhang, Y. Xue, and Y. Pu. 2015. “Surface Modification of Multiwall Carbon Nanotubes Determines the Pro-Inflammatory Outcome in Macrophage.” Journal of Hazardous Materials 284: 73–82. doi:10.1016/j.jhazmat.2014.11.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.