1,850
Views
3
CrossRef citations to date
0
Altmetric
Articles

Evaluation of graphene-derived bone scaffold exposure to the calvarial bone_in-vitro and in-vivo studies

, , , , , , & show all
Pages 1-15 | Received 02 Dec 2021, Accepted 05 Jan 2022, Published online: 27 Jan 2022

References

  • Aidun, A., A. Safaei Firoozabady, M. Moharrami, A. Ahmadi, N. Haghighipour, S. Bonakdar, and S. Faghihi. 2019. “Graphene Oxide Incorporated Polycaprolactone/Chitosan/Collagen Electrospun Scaffold: Enhanced Osteogenic Properties for Bone Tissue Engineering.” Artificial Organs 43 (10): E264–E281. doi:https://doi.org/10.1111/aor.13474.
  • Alagarsamy, K. N., S. Mathan, W. Yan, A. Rafieerad, S. Sekaran, H. Manego, and S. Dhingra. 2021. “Carbon Nanomaterials for Cardiovascular Theranostics: Promises and Challenges.” Bioactive Materials 6 (8): 2261–2280.
  • Bandyopadhyay, A., I. Mitra, and S. Bose. 2020. “3D Printing for Bone Regeneration.” Current Osteoporosis Reports 18 (5): 505–514.
  • Bechard, A., R. Meagher, and G. Mason. 2011. “Environmental Enrichment Reduces the Likelihood of Alopecia in Adult C57BL/6J Mice.” Journal of the American Association for Laboratory Animal Science 50 (2): 171–174.
  • Bharadwaz, A., and A. C. Jayasuriya. 2020. “Recent Trends in the Application of Widely Used Natural and Synthetic Polymer Nanocomposites in Bone Tissue Regeneration.” Materials Science & Engineering. C, Materials for Biological Applications 110: 110698.
  • Bliley, J. M., and K. G. Marra. 2015. “Chapter 11 - Polymeric Biomaterials as Tissue Scaffolds.” In: Vishwakarma, A., P. Sharpe, S. Shi, & M. Ramalingam (eds.) Stem Cell Biology and Tissue Engineering in Dental Sciences. Boston: Academic Press.
  • Born, H. A., A. T. Dao, A. T. Levine, W. L. Lee, N. M. Mehta, S. Mehra, E. J. Weeber, and A. E. Anderson. 2017. “Strain-Dependence of the Angelman Syndrome Phenotypes in Ube3a Maternal Deficiency Mice.” Scientific Reports 7 (1): 8451.
  • Campana, V., G. Milano, E. Pagano, M. Barba, C. Cicione, G. Salonna, W. Lattanzi, and G. Logroscino. 2014. “Bone Substitutes in Orthopaedic Surgery: From Basic Science to Clinical Practice.” Journal of Materials Science. Materials in Medicine 25 (10): 2445–2461.
  • Chang, T. K., Y. C. Lu, S. T. Yeh, T. C. Lin, C. H. Huang, and C. H. Huang. 2020. “In Vitro and in Vivo Biological Responses to Graphene and Graphene Oxide: A Murine Calvarial Animal Study.” International Journal of Nanomedicine 15: 647–659.
  • Chen, Y., W. Li, C. Zhang, Z. Wu, and J. Liu. 2020. “Recent Developments of Biomaterials for Additive Manufacturing of Bone Scaffolds.” Advanced Healthcare Materials 9 (23): e2000724. doi:https://doi.org/10.1002/adhm.202000724.
  • Copping, N. A., and J. L. Silverman. 2021. “Abnormal Electrophysiological Phenotypes and Sleep Deficits in a Mouse Model of Angelman Syndrome.” Molecular Autism 12: 9.
  • Crowder, S. W., D. Prasai, R. Rath, D. A. Balikov, H. Bae, K. I. Bolotin, and H. J. Sung. 2013. “Three-Dimensional Graphene Foams Promote Osteogenic Differentiation of Human Mesenchymal Stem Cells.” Nanoscale 5 (10): 4171–4176.
  • DE Biase, D., F. Esposito, M. DE Martino, C. Pirozzi, A. Luciano, G. Palma, G. M. Raso, et al. 2019. “Characterization of Inflammatory Infiltrate of Ulcerative Dermatitis in C57BL/6NCrl-Tg(HMGA1P6)1Pg Mice.” Laboratory Animals 53 (5): 447–458.
  • Du, Z., C. Wang, R. Zhang, X. Wang, and X. Li. 2020. “Applications of Graphene and Its Derivatives in Bone Repair: Advantages for Promoting Bone Formation and Providing Real-Time Detection, Challenges and Future Prospects.” International Journal of Nanomedicine 15: 7523–7551. doi:https://doi.org/10.2147/IJN.S271917.
  • Eivazzadeh-Keihan, R., A. Maleki, M. DE LA Guardia, M. S. Bani, K. K. Chenab, P. Pashazadeh-Panahi, B. Baradaran, A. Mokhtarzadeh, and M. R. Hamblin. 2019. “Carbon Based Nanomaterials for Tissue Engineering of Bone: Building New Bone on Small Black Scaffolds: A Review.” Journal of Advanced Research 18: 185–201. doi:https://doi.org/10.1016/j.jare.2019.03.011.
  • Ema, M., M. Gamo, and K. Honda. 2017. “A Review of Toxicity Studies on Graphene-Based Nanomaterials in Laboratory Animals.” Regulatory Toxicology and Pharmacology: RTP 85: 7–24.
  • Fernandez, G. C., M. F. Lopez, S. A. Gomez, M. V. Ramos, L. V. Bentancor, R. J. Fernandez-Brando, V. I. Landoni, et al. 2006. “Relevance of Neutrophils in the Murine Model of Haemolytic Uraemic Syndrome: mechanisms Involved in Shiga Toxin Type 2-Induced Neutrophilia.” Clinical and Experimental Immunology 146 (1): 76–84.
  • Ferrari, A. C., and J. Robertson. 2000. “Interpretation of Raman Spectra of Disordered and Amorphous Carbon.” Physical Review B 61 (20): 14095–14107. doi:https://doi.org/10.1103/PhysRevB.61.14095.
  • Ge, Y. W., X. L. Liu, D. G. Yu, Z. A. Zhu, Q. F. Ke, Y. Q. Mao, Y. P. Guo, and J. W. Zhang. 2021. “Graphene-Modified CePO4 Nanorods Effectively Treat Breast Cancer-Induced Bone Metastases and Regulate Macrophage Polarization to Improve Osteo-Inductive Ability.” Journal of Nanobiotechnology 19 (1): 11. doi:https://doi.org/10.1186/s12951-020-00753-9.
  • Han, S., J. Sun, S. He, M. Tang, and R. Chai. 2019. “The Application of Graphene-Based Biomaterials in Biomedicine.” American Journal of Translational Research 11 (6): 3246–3260.
  • Hermenean, A., A. Codreanu, H. Herman, C. Balta, M. Rosu, C. V. Mihali, A. Ivan, S. Dinescu, M. Ionita, and M. Costache. 2017. “Chitosan-Graphene Oxide 3D Scaffolds as Promising Tools for Bone Regeneration in Critical-Size Mouse Calvarial Defects.” Scientific Reports 7 (1): 16641.
  • Hung-Shih Lin, H.-W F. 2021. “EEG-Based Repetitive Transcranial Magnetic Stimulation for Treatment of Autism Spectrum Disorder.” Biomedical Journal of Scientific & Technical Research 34: 27186–27189.
  • International, A. 2020. ASTM C1557-20, Standard Test Method for Tensile Strength and Young's Modulus of Fibers. West Conshohocken, PA: ASTM International.
  • Jariwala, S. H., G. S. Lewis, Z. J. Bushman, J. H. Adair, and H. J. Donahue. 2015. “3D Printing of Personalized Artificial Bone Scaffolds.” 3D Printing and Additive Manufacturing 2 (2): 56–64.
  • Kent, B. A., S. M. Strittmatter, and H. B. Nygaard. 2018. “Sleep and EEG Power Spectral Analysis in Three Transgenic Mouse Models of Alzheimer's Disease: APP/PS1, 3xTgAD, and Tg2576.” Journal of Alzheimer's Disease 64 (4): 1325–1336.
  • Kim, J. K., J. H. Shin, J. S. Lee, J. H. Hwang, J. H. Lee, J. E. Baek, T. G. Kim, et al. 2016. “28-Day Inhalation Toxicity of Graphene Nanoplatelets in Sprague-Dawley Rats.” Nanotoxicology 10 (7): 891–901.
  • Kim, T., G. Han, and Y. Jung. 2019. “Facile Fabrication of Polyvinyl Alcohol/Edge-Selectively Oxidized Graphene Composite Fibers.” Materials (Basel, Switzerland) [Online] 12(21): 3525.
  • Kuchler-Bopp, S., A. Larrea, L. Petry, Y. Idoux-Gillet, V. Sebastian, A. Ferrandon, P. Schwinte, M. Arruebo, and N. Benkirane-Jessel. 2017. “Promoting Bioengineered Tooth Innervation Using Nanostructured and Hybrid Scaffolds.” Acta Biomaterialia 50: 493–501.
  • Kudin, K. N., B. Ozbas, H. C. Schniepp, R. K. Prud'Homme, I. A. Aksay, and R. Car. 2008. “Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets.” Nano Letters 8 (1): 36–41.
  • Lam, C. X. F., D. W. Hutmacher, J.-T. Schantz, M. A. Woodruff, and S. H. Teoh. 2009. “Evaluation of Polycaprolactone Scaffold Degradation for 6 Months in Vitro and in Vivo.” Journal of Biomedical Materials Research 90(3):906–919.
  • Lee, M. S., D. Lee, J. Jin, G. Tae, Y. M. Shin, and H. S. Yang. 2019. “Biofabrication and Application of Decellularized Bone Extracellular Matrix for Effective Bone Regeneration.” Journal of Industrial and Engineering Chemistry 83:323–332.
  • Liang, S., S. Xu, D. Zhang, J. He, and M. Chu. 2015. “Reproductive Toxicity of Nanoscale Graphene Oxide in Male Mice.” Nanotoxicology 9 (1): 92–105.
  • Lienemann, P. S., S. Metzger, A. Sofia-Kiveli, A Blanc, P. Papageorgiou, A. Astolfo, B. R. Pinzer, et al. 2015. “Longitudinal In Vivo Evaluation of Bone Regeneration by Combined Measurement of Multi-Pinhole SPECT and Micro-CT for Tissue Engineering.” Scientific Report 5:10238.
  • Lu, J., C. Cheng, Y. S. He, C. Lyu, Y. Wang, J. Yu, L. Qiu, D. Zou, and D. Li. 2016. “Multilayered Graphene Hydrogel Membranes for Guided Bone Regeneration.” Advanced Materials (Deerfield Beach, Fla.) 28 (21): 4025–4031.
  • Mahdavi, R., G. Belgheisi, M. Haghbin-Nazarpak, M. Omidi, A. Khojasteh, and M. Solati-Hashjin. 2020. “Bone Tissue Engineering Gelatin-Hydroxyapatite/Graphene Oxide Scaffolds with the Ability to Release Vitamin D: fabrication, Characterization, and in Vitro Study.” Journal of Materials Science. Materials in Medicine 31 (11): 97.
  • Manoukian, O. S., N. Sardashti, T. Stedman, K. Gailiunas, A. Ojha, A. Penalosa, C. Mancuso, M. Hobert, and S. G. Kumbar. 2019. “Biomaterials for Tissue Engineering and Regenerative Medicine.” In: NARAYAN, R. (ed.) Encyclopedia of Biomedical Engineering. Oxford: Elsevier.
  • Melnik, E.,. S. Shkarina, S. Ivlev, V. Weinhardt, T. Baumbach, M. Chaikina, M. Surmeneva, and R. Surmenev. 2019. “In Vitro Degradation Behaviour of Electrospun Hybrid Scaffolds of Polycaprolactone and Strontium-Containing Hydroxyapatite Microparticles.” Polymer Degradation and Stability 167:21–32.
  • Mittal, S. K., D. Goyal, A. Chauhan, and R. K. Dang. 2020. “Graphene Nanoparticles: The Super Material of Future.” Materials Today: Proceedings 28: 1290–1294.
  • Mohammadi, S., S. S. Shafiei, M. Asadi-Eydivand, M. Ardeshir, and M. Solati-Hashjin. 2017. “Graphene Oxide-Enriched Poly(ε-Caprolactone) Electrospun Nanocomposite Scaffold for Bone Tissue Engineering Applications.” Journal of Bioactive and Compatible Polymers 32 (3): 325–342. doi:https://doi.org/10.1177/0883911516668666.
  • Nowicki, M. A., N. J. Castro, M. W. Plesniak, and L. G. Zhang. 2016. “3D Printing of Novel Osteochondral Scaffolds with Graded Microstructure.” Nanotechnology 27 (41): 414001.
  • O'Connell, K. E., A. M. Mikkola, A. M. Stepanek, A. Vernet, C. D. Hall, C. C. Sun, E. Yildirim, J. F. Staropoli, J. T. Lee, and D. E. Brown. 2015. “Practical Murine Hematopathology: A Comparative Review and Implications for Research.” Comparative Medicine 65 (2): 96–113.
  • Ou, L., B. Song, H. Liang, J. Liu, X. Feng, B. Deng, T. Sun, and L. Shao. 2016. “Toxicity of Graphene-Family Nanoparticles: A General Review of the Origins and Mechanisms.” Particle and Fibre Toxicology 13 (1): 57.
  • Pang, Wenchao, Zifeng Ni, Guomei Chen, Guodong Huang, Huadong Huang, and Yongwu Zhao. 2015. “Mechanical and Thermal Properties of Graphene Oxide/Ultrahigh Molecular Weight Polyethylene Nanocomposites.” Royal Society of Chemistry Advances 5 (77): 63063–63072. doi:https://doi.org/10.1039/C5RA11826C.
  • Peng, Z., T. Zhao, Y. Zhou, S. Li, J. Li, and R. M. Leblanc. 2020. “Bone Tissue Engineering via Carbon-Based Nanomaterials.” Advanced Healthcare Materials 9 (5): e1901495.
  • Qi, C., Y. Deng, L. Xu, C. Yang, Y. Zhu, G. Wang, Z. Wang, and L. Wang. 2020. “A Sericin/Graphene Oxide Composite Scaffold as a Biomimetic Extracellular Matrix for Structural and Functional Repair of Calvarial Bone.” Theranostics 10 (2): 741–756.
  • Qian, G., L. Zhang, G. Wang, Z. Zhao, S. Peng, and C. Shuai. 2021. “3D Printed Zn-Doped Mesoporous Silica-Incorporated Poly-L-Lactic Acid Scaffolds for Bone Repair.” International Journal of Bioprinting 7 (2): 346.
  • Qian, Guowen, Peirong Fan, Fupo He, and Jiandong Ye. 2019. “Novel Strategy to Accelerate Bone Regeneration of Calcium Phosphate Cement by Incorporating 3D Plotted Poly(Lactic-co-Glycolic Acid) Network and Bioactive Wollastonite.” Advanced Healthcare Materials 8 (9): e1801325. doi:https://doi.org/10.1002/adhm.201801325.
  • Qin, H., J. Wang, T. Wang, X. Gao, Q. Wan, and X. Pei. 2018. “Preparation and Characterization of Chitosan/beta-Glycerophosphate Thermal-Sensitive Hydrogel Reinforced by Graphene Oxide.” Frontiers in Chemistry 6: 565.
  • Qu, Y., F. He, C. Yu, X. Liang, D. Liang, L. Ma, Q. Zhang, J. Lv, and J. Wu. 2018. “Advances on Graphene-Based Nanomaterials for Biomedical Applications.” Materials Science & Engineering. C, Materials for Biological Applications 90: 764–780.
  • Samsonraj, R. M., A. Dudakovic, P. Zan, O. Pichurin, S. M. Cool, and A. J. VAN Wijnen. 2017. “A Versatile Protocol for Studying Calvarial Bone Defect Healing in a Mouse Model.” Tissue Engineering Part C: Methods 23 (11): 686–693. doi:https://doi.org/10.1089/ten.tec.2017.0205.
  • Sasidharan, A., S. Swaroop, P. Chandran, S. Nair, and M. Koyakutty. 2016. “Cellular and Molecular Mechanistic Insight into the DNA-Damaging Potential of Few-Layer Graphene in Human Primary Endothelial Cells.” Nanomedicine: Nanotechnology, Biology and Medicine 12 (5): 1347–1355. doi:https://doi.org/10.1016/j.nano.2016.01.014.
  • Schwab, C. L., R. Fan, Q. Zheng, L. P. Myers, P. Hebert, and S. B. Pruett. 2005. “Modeling and Predicting Stress-Induced Immunosuppression in Mice Using Blood Parameters.” Toxicological Sciences: An Official Journal of the Society of Toxicology 83 (1): 101–113.
  • Shahin, M., K. Munir, C. Wen, and Y. Li. 2020. “Magnesium-Based Composites Reinforced with Graphene Nanoplatelets as Biodegradable Implant Materials.” Journal of Alloys and Compounds 828: 154461. doi:https://doi.org/10.1016/j.jallcom.2020.154461.
  • Shahin-Shamsabadi, A., A. Hashemi, M. Tahriri, F. Bastami, M. Salehi, and F. Mashhadi Abbas. 2018. “Mechanical, Material, and Biological Study of a PCL/Bioactive Glass Bone Scaffold: Importance of Viscoelasticity.” Materials Science & Engineering. C, Materials for Biological Applications 90: 280–288.
  • Shang, F., Y. Yu, S. Liu, L. Ming, Y. Zhang, Z. Zhou, J. Zhao, and Y. Jin. 2021. “Advancing Application of Mesenchymal Stem Cell-Based Bone Tissue Regeneration.” Bioactive Materials 6 (3): 666–683.
  • Shin, Y. C., S.-J. Song, S. J. Jeong, B. Kim, I. K. Kwon, S. W. Hong, J.-W. Oh, and D.-W. Han. 2018. “Graphene-Based Nanocomposites as Promising Options for Hard Tissue Regeneration.” Advances in Experimental Medicine and Biology 1078: 103–117. doi:https://doi.org/10.1007/978-981-13-0950-2_6.
  • Siddiqui, N., S. Asawa, B. Birru, R. Baadhe, and S. Rao. 2018. “PCL-Based Composite Scaffold Matrices for Tissue Engineering Applications.” Molecular Biotechnology 60 (7): 506–532.
  • Surmenev, R. A., S. Shkarina, D. S. Syromotina, E. V. Melnik, R. Shkarin, I. I. Selezneva, A. M. Ermakov, et al. 2019. “Characterization of Biomimetic Silicate- and Strontium-Containing Hydroxyapatite Microparticles Embedded in Biodegradable Electrospun Polycaprolactone Scaffolds for Bone Regeneration.” European Polymer Journal 113: 67–77. doi:https://doi.org/10.1016/j.eurpolymj.2019.01.042.
  • Tonelli, F. M., V. A. Goulart, K. N. Gomes, M. S. Ladeira, A. K. Santos, E. Lorencon, L. O. Ladeira, and R. R. Resende. 2015. “Graphene-Based Nanomaterials: biological and Medical Applications and Toxicity.” Nanomedicine (London, England) 10 (15): 2423–2450.
  • Ţucureanu, V., A. Matei, and A. Avram. 2016. “FTIR Spectroscopy for Carbon Family Study.” Critical Reviews in Analytical Chemistry 46 (6): 502–520.
  • Wang, H., M. Domingos, and F. Scenini. 2018. “Advanced Mechanical and Thermal Characterization of 3D Bioextruded Poly(e-Caprolactone)-Based Composites.” Rapid Prototyping Journal 24 (4): 731–738. doi:https://doi.org/10.1108/RPJ-10-2016-0165.
  • Wang, W., G. Caetano, W.-H. Chiang, A. L. Sousa, J. Blaker, M. Frade, C. Frade, and P. BñRTOLO. 2016. “Morphological, Mechanical and Biological Assessment of PCL/Pristine Graphene Scaffolds for Bone Regeneration.” International Journal of Bioprinting 2 (2): 95–105. doi:https://doi.org/10.18063/IJB.2016.02.009.
  • Wang, W., J. R. P. Junior, P. R. L. Nalesso, D. Musson, J. Cornish, F. Mendonca, G. F. Caetano, and P. Bartolo. 2019. “Engineered 3D Printed Poly(Varepsilon-Caprolactone)/Graphene Scaffolds for Bone Tissue Engineering.” Materials Science & Engineering. C, Materials for Biological Applications 100: 759–770.
  • Wu, C., L. Xia, P. Han, M. Xu, B. Fang, J. Wang, J. Chang, and Y. Xiao. 2015. “Graphene-Oxide-Modified β-Tricalcium Phosphate Bioceramics Stimulate in Vitro and in Vivo Osteogenesis.” Carbon 93: 116–129. doi:https://doi.org/10.1016/j.carbon.2015.04.048.
  • Wu, J. B., M. L. Lin, X. Cong, H. N. Liu, and P. H. Tan. 2018. “Raman Spectroscopy of Graphene-Based Materials and Its Applications in Related Devices.” Chemical Society Reviews 47 (5): 1822–1873.
  • Wu, Q., Y. Zhao, G. Zhao, and D. Wang. 2014. “microRNAs Control of in Vivo Toxicity from Graphene Oxide in Caenorhabditis elegans.” Nanomedicine: Nanotechnology, Biology, and Medicine 10 (7): 1401–1410.
  • Wu, W., L. Yan, Q. Wu, Y. Li, Q. Li, S. Chen, Y. Yang, Z. Gu, H. Xu, and Z. Q. Yin. 2016. “Evaluation of the Toxicity of Graphene Oxide Exposure to the Eye.” Nanotoxicology 10 (9): 1329–1340. doi:https://doi.org/10.1080/17435390.2016.1210692.
  • Yamada, Y., J. A. Cancelas, and M. E. Rothenberg. 2009. “Murine Model of Hypereosinophilic Syndromes/Chronic Eosinophilic Leukemia.” International Archives of Allergy and Immunology 149 Suppl 1 (Suppl 1): 102–107.
  • Yan, Y., H. Chen, H. Zhang, C. Guo, K. Yang, K. Chen, R. Cheng, et al. 2019. “Vascularized 3D Printed Scaffolds for Promoting Bone Regeneration.” Biomaterials 190-191: 97–110.
  • Yang, W., Y. Zhong, C. He, S. Peng, Y. Yang, F. Qi, P. Feng, and C. Shuai. 2020. “Electrostatic Self-Assembly of pFe3O4 Nanoparticles on Graphene Oxide: A co-Dispersed Nanosystem Reinforces PLLA Scaffolds.” Journal of Advanced Research 24: 191–203. doi:https://doi.org/10.1016/j.jare.2020.04.009.
  • Yang, Y., Y. Cheng, S. Peng, L. Xu, C. He, F. Qi, M. Zhao, and C. Shuai. 2021. “Microstructure Evolution and Texture Tailoring of Reduced Graphene Oxide Reinforced Zn Scaffold.” Bioactive Materials 6 (5): 1230–1241.
  • Zhang, L., G. Yang, B. N. Johnson, and X. Jia. 2019. “Three-Dimensional (3D) Printed Scaffold and Material Selection for Bone Repair.” Acta Biomaterialia 84: 16–33.
  • Zhao, M., J. Shi, W. Cai, K. Liu, K. Shen, Z. Li, Y. Wang, and D. Hu. 2021. “Advances on Graphene-Based Nanomaterials and Mesenchymal Stem Cell-Derived Exosomes Applied in Cutaneous Wound Healing.” International Journal of Nanomedicine 16: 2647–2665.