316
Views
1
CrossRef citations to date
0
Altmetric
Article

Effect of titanium dioxide nanoparticles on histone modifications and histone modifying enzymes expression in human cell lines

, , &
Pages 409-424 | Received 03 Mar 2022, Accepted 27 May 2022, Published online: 24 Jul 2022

References

  • Abi Kahalil, C. 2014. “The Emerging Role of Epigenetic in Cardiovascular Disease.” Therapeutic Advances in Chronic Disease 5: 178–187.
  • Allis, C. D., S. L. Berger, J. Cote, S. Dent, T. Jenuwien, T. Kouzarides, L. Pillus, et al. 2007. “New Nomenclature for Chromatin-Modifying Enzymes.” Cell 131 (4): 633–636. doi:10.1016/j.cell.2007.10.039.
  • Arita, A., and M. Costa. 2014. “Oxidative Stress and the Epigenome in Human Disease.” Journal of Genetics Genome Research 1 (2): 1–5.
  • Baccarelli, A., and V. Bollati. 2009. “Epigenetics and Environmental Chemicals.” Current Opinion in Pediatrics 21 (2): 243–251. doi:10.1097/mop.0b013e32832925cc.
  • Bai, X. L., L. H. Wu, T. B. Liang, Z. Q. Liu, J. J. Li, D. L. Li, H. Y. Xie, et al. 2007. “Overexpression of Myocyte Enhancer Factor 2 and Histone Hyperacetylation in Hepatocellular Carcinoma.” Journal of Cancer Research and Clinical Oncology 134 (1): 83–91. doi:10.1007/s00432-007-0252-7.
  • Barber, M. F., E. Michishita-Kioi, Y. Xi, L. Tasselli, M. Kioi, Z. Moqtaderi, R. I. Tennen, et al. 2012. “SIRT7 Links H3K18 Deacetylation to Maintenance of Oncogenic Transformation.” Nature 487 (7405): 114–118. doi:10.1038/nature11043.
  • Barlési, F., G. Giaccone, M. I. Gallegos-Ruiz, A. Loundou, S. W. Span, P. Lefesvre, F. A. E. Kruyt, et al. 2007. “Global Histone Modifications Predict Prognosis of Resected Non-Small Cell Lung Cancer.” Journal of Clinical Oncology 25 (28): 4358–4364. doi:10.1200/JCO.2007.11.2599.
  • Baylin, S. B., and P. A. Jones. 2011. “A Decade of Exploring the Cancer Epigenome - Biological and Translational Implications.” Nature Reviews. Cancer 11 (10): 726–734. doi:10.1038/nrc3130.
  • Benard, A., I. J. Goossens-Beumer, A. Q. van Hoesel, W. de Graaf, H. Horati, H. Putter, Z. EDM, C. J. H. van de Velde, and P. J. K. Kuppen. 2014. “Histone Trimethylation at H3K4, H3K9, and H4K20 Correlated with Patient Survival and Tumor Recurrence in Early-Stage Colon Cancer.” BMC Cancer 14 (1): 531–531? doi:10.1186/1471-2407-14-531.
  • Bhat, A. V., S. Hora, A. Pal, S. Jha, and R. Taneja. 2018. “Stressing the (Epi)Genome: Dealing with Reactive Oxygen Species in Cancer.” Antioxidants & Redox Signaling 29 (13): 1273–1294. doi:10.1089/ars.2017.7158.
  • Cai, M.-Y., J.-H. Hou, H.-L. Rao, R.-Z. Luo, M. Li, X.-Q. Pei, M. C. Lin, et al. 2011b. “High Expression of H3K27me3 in Human Hepatocellular Carcinoma Correlates Closely with Vascular Invasion and Predicts Worse Prognosis in Patients.” Molecular Medicine 17 (1-2): 12–20. doi:10.2119/molmed.2010.00103.
  • Cai, M.-Y., Z.-T. Tong, W. Zhu, Z.-Z. Wen, H.-L. Rao, L.-L. Kong, X.-Y. Guan, et al. 2011a. “H3K27me3 Protein is a Promising Predictive Biomarker of Patients’ Survival and Chemoradioresistance in Human Nasopharyngeal Carcinoma.” Molecular Medicine 17 (11-12): 1137–1145. doi:10.2119/molmed.2011.00054.
  • Carvalho, S., M. Freitas, L. Antunes, S. Monteiro-Reis, M. Vieira-Coimbra, A. Tavares, S. Paulino, J. F. Videira, C. Jerónimo, and R. Henrique. 2018. “Prognostic Value of Histone Marks H3K27me3 and H3K9me3 and Modifying Enzymes EZH2, SETDB1 and LSD-1 in Colorectal Cancer.” Journal of Cancer Research and Clinical Oncology 144 (11): 2127–2137. doi:10.1007/s00432-018-2733-2.
  • Casciello, F., K. Windloch, F. Gannon, and J. S. Lee. 2015. “Functional Role of G9a Histone Methyltransferase in Cancer.” Frontiers in Immunology 6: 487. doi:10.3389/fimmu.2015.00487.
  • Chen, H. W., S. F. Su, C. T. Chien, W. H. Lin, S. L. Yu, C. C. Chou, J. J. Chen, and P. C. Yang. 2006. “Titanium Dioxide Nanoparticles Induce Emphysema-like Lung Injury in Mice.” FASEB Journal 20 (13): 2393–2395. doi:10.1096/fj.06-6485fje.
  • Chervona, Y., and M. Costa. 2012. “Histone Modifications and Cancer: biomarkers of Prognosis?” American Journal of Cancer Research 2: 589–597.
  • Cheung, N., L. C. Chan, A. Thompson, M. I. Cleary, and C. W. E. So. 2007. “Protein Arginine-Methyltransferase-Dependent Oncogenesis.” Nature Cell Biology 9 (10): 1208–1215. doi:10.1038/ncb1642.
  • Colamaio, M., F. Puca, E. Ragozzino, M. Gemei, M. Decaussin-Petrucci, C. Aiello, A. U. Bastos, et al. 2015. “miR-142-3p down-Regulation Contributes to Thyroid Follicular Tumorigenesis by Targeting ASH1L and MLL1.” The Journal of Clinical Endocrinology and Metabolism 100 (1): E59–E69. doi:10.1210/jc.2014-2280.
  • Damodaran, S., N. Damaschke, J. Gawdzik, B. Yang, C. Shi, G. O. Allen, W. Huang, J. Denu, and D. Jarrard. 2017. “Dysregulation of Sirtuin 2 (SIRT2) and Histone H3K18 Acetylation Pathways Associates with Adverse Prostate Cancer Outcomes.” BMC Cancer 17 (1): 874. doi:10.1186/s12885-017-3853-9.
  • Duan, Y., J. Liu, L. Ma, N. Li, H. Liu, J. Wang, L. Zheng, et al. 2010. “Toxicological Characteristics of Nanoparticulate Anatase Titanium Dioxide in Mice.” Biomaterials 31 (5): 894–899. doi:10.1016/j.biomaterials.2009.10.003.
  • Falandry, C., G. Fourel, V. Galy, T. Ristriani, B. Horard, E. Bensimon, G. Salles, E. Gilson, and F. Magdinier. 2010. “CLLD8/KMT1F is a Lysine Methyltransferase That is Important for Chromosome Segregation.” The Journal of Biological Chemistry 285 (26): 20234–20241. doi:10.1074/jbc.M109.052399.
  • Feil, R., and M. F. Fraga. 2012. “Epigenetics and the Environment: Emerging Patterns and Implications.” Nature Reviews. Genetics 13 (2): 97–109. doi:10.1038/nrg3142.
  • Feng, B., M. A. Ruiz, and S. Chakrabarti. 2013. “Oxidative-Stress-Induced Epigenetic Changes in Chronic Diabetic Complications.” Canadian Journal of Physiology and Pharmacology 91 (3): 213–220. doi:10.1139/cjpp-2012-0251.
  • Ferrari, L., S. Pavanello, and V. Bollati. 2019. “Molecular and Epigenetic Markers as Promising Tools to Quantify the Effect of Occupational Exposures and the Risk of Developing Non-Communicable Diseases.” La Medicina del Lavoro 110 (3): 168–190.
  • Francis, N. J., R. E. Kingston, and C. L. Woodcock. 2004. “Chromatin Compaction by a Polycomb Group Protein Complex.” Science 306 (5701): 1574–1577. doi:10.1126/science.1100576.
  • Gao, F., N. Ma, H. Zhou, Q. Wang, H. Zhang, P. Wang, H. Hou, H. Wen, and L. Li. 2016. “Zinc Oxide Nanoparticles-Induced Epigenetic Change and G2/M Arrest Are Associated with Apoptosis in Human Epidermal Keratinocytes.” International Journal of Nanomedicine 11: 3859–3874. doi:10.2147/IJN.S107021.
  • Ge, J., W. Yu, J. Li, H. Ma, P. Wang, Y. Zhou, Y. Wang, J. Zhang, and G. Shi. 2021. “USP16 Regulates Castration-Resistant Prostate Cancer Cell Proliferation by Deubiquitinating and Stabilizing c-MYC.” Journal of Experimental and Clinical Cancer Research 40 (59): 1–15.
  • He, L.-R., M.-Z. Liu, B.-K. Li, H.-L. Rao, Y.-J. Liao, X.-Y. Guan, Y.-X. Zeng, and D. Xie. 2009. “Prognostic Impact of H3K27me3 Expression on Locoregional Progression After Chemoradiotherapy in Esophageal Squamous Cell Carcinoma.” BMC Cancer 9: 461. doi:10.1186/1471-2407-9-461.
  • Ho, T. H., P. Kapur, R. W. Joseph, D. J. Serie, J. E. Eckel-Passow, P. Tong, J. Wang, et al. 2016. “Loss of Histone H3 Lysine 36 Trimethylation is Associated with an Increased Risk of Renal Cell Carcinoma-Specific Death.” Modern Pathology 29 (1): 34–42. doi:10.1038/modpathol.2015.123.
  • Hou, J., L. Wang, C. Wang, S. Zhang, H. Liu, S. Li, and X. Wang. 2019. “Toxicity and Mechanisms of Action of Titanium Dioxide Nanoparticles in Living Organisms.” Journal of Environmental Sciences (China) 75: 40–53. doi:10.1016/j.jes.2018.06.010.
  • Huang, W.-L., C.-W. Luo, C.-L. Chou, C.-C. Yang, T.-J. Chen, C.-F. Li, and Pan, M.-R. 2020. “High Expression of UBE2B as a Poor Prognosis Factor in Patients with Rectal Cancer following Chemoradiotherapy.” Anticancer Research 40 (11): 6305–6317. doi:10.21873/anticanres.14651.
  • Hwang, J. Y., K. A. Aromolaran, and R. S. Zukin. 2017. “The Emerging Field of Epigenetics in Neurodegeneration and Neuroprotection.” Nature Reviews. Neuroscience 18 (6): 347–361. doi:10.1038/nrn.2017.46.
  • IARC. 2010. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Carbon Black, Titanium Dioxide, and Talc. Lyon: International Agency for Research on Cancer
  • Iavicoli, I., V. Leso, L. Fontana, and A. Bergamaschi. 2011. “Toxicological Effects of Titanium Dioxide Nanoparticles: A Review of in Vitro Mammalian Studies.” European Review for Medical and Pharmacological Sciences 15 (5): 481–508.
  • Jakovcevski, M., and S. Akbarian. 2012. “Epigenetic Mechanisms in Neurological Disease.” Nature Medicine 18 (8): 1194–1202. doi:10.1038/nm.2828.
  • Jayaram, D. T., A. Kumar, L. E. Kippner, P.-Y. Ho, M. L. Kemp, Y. Fan, and C. K. Payne. 2019. “TiO2 Nanoparticles Generate Superoxide and Alter Gene Expression in Human Lung Cells.” RSC Advances 9 (43): 25039–25047. doi:10.1039/c9ra04037d.
  • Juliano, C. N., P. Izetti, M. P. Pereira, A. P. dos Santos, C. P. Bravosi, A. L. Abujamra, P. A. Prolla, A. B. Osvaldt, and M. I. A. Edelweiss. 2016. “H4K12 and H3K18 Acetylation Associates with Poor Prognosis in Pancreatic Cancer.” Applied Immunohistochemistry & Molecular Morphology 24 (5): 337–344. doi:10.1097/PAI.0000000000000194.
  • Kang, K. A., R. Zhang, G. Y. Kim, S. C. Bae, and J. W. Hyun. 2012. “Epigenetic Changes Induced by Oxidative Stress in Colorectal Cancer Cells: methylation of Tumor Suppressor RUNX3.” Tumour Biology 33 (2): 403–412. doi:10.1007/s13277-012-0322-6.
  • Karmodiya, K., A. R. Krebs, M. Oulad-Abdelghani, H. Kimura, and L. Tora. 2012. “H3K9 and H3K14 Acetylation co-Occur at Many Gene Regulatory Elements, While H3K14ac Marks a Subset of Inactive Inducible Promoters in Mouse Embryonic Stem Cells.” BMC Genomics 13: 424–424? doi:10.1186/1471-2164-13-424.
  • Khan, I., K. Saeed, and I. Khan. 2019. “Nanoparticles: Properties, Applications and Toxicities.” Arabian Journal of Chemistry 12 (7): 908–931. doi:10.1016/j.arabjc.2017.05.011.
  • Kietzman, T., A. Petry, A. Shvetsova, J. M. Gerhold, and A. Gorlach. 2017. “The Epigenetic Landscape Related to Reactive Oxygen Species Formation in the Cardiovascular System.” British Journal of Pharmacology 174 (12): 1533–1554. doi:10.1111/bph.13792.
  • Kim, Y.-R., B. K. Lee, R.-Y. Park, N. T. X. Nguyen, J. A. Bae, D. D. Kwon, and C. Jung. 2010. “Differential CARM1 Expression in Prostate and Colorectal Cancers.” BMC Cancer 10 (1): 197. doi:10.1186/1471-2407-10-197.
  • Kouzarides, T. 2007. “Chromatin Modifications and Their Function.” Cell 128 (4): 693–705. doi:10.1016/j.cell.2007.02.005.
  • Kreuz, S., and W. Fischle. 2016. “Oxidative Stress Signaling to Chromatin in Health and Disease.” Epigenomics 8 (6): 843–862. doi:10.2217/epi-2016-0002.
  • Kurdistani, S. K. 2011. “Histone Modifications in Cancer Biology and Prognosis.” Progress in Drug Research 67: 91–106.
  • Langevin, S. M., R. A. Kratzke, and K. T. Kelsey. 2015. “Epigenetics of Lung Cancer.” Translational Research : The Journal of Laboratory and Clinical Medicine 165 (1): 74–90. doi:10.1016/j.trsl.2014.03.001.
  • Leshner, M., S. Wang, C. Lewis, H. Zheng, X. A. Chen, L. Santy, and Y. Wang. 2012. “PAD4 Mediated Histone Hypercitrullination Induces Heterochromatin Decondensation and Chromatin Unfolding to Form Neutrophil Extracellular Trap-like Structures.” Frontiers in Immunology 3: 307. doi:10.3389/fimmu.2012.00307.
  • Li, S., L. Shen, and K.-N. Chen. 2018. “Association between H3K4 Methylation and Cancer Prognosis: A Meta-Analysis.” Thoracic Cancer 9 (7): 794–799. doi:10.1111/1759-7714.12647.
  • Li, Q.-L., D.-Y. Wang, L.-G. Ju, J. Yao, C. Gao, P.-J. Lei, L.-Y. Li, X.-L. Zhao, and M. Wu. 2019. “The Hyper-Activation of Transcriptional Enhancers in Breast Cancer.” Clinical Epigenetics 11 (1): 48. doi:10.1186/s13148-019-0645-x.
  • Lien, H.-C., Y.-M. Jeng, Y-l. Jhuang, and R.-H. Yuan. 2018. “Increased Trimethylation of Histone H3K36 Associated with Biliary Differentiation and Predicts Poor Prognosis in Resectable Hepatocellular Carcinoma.” PLoS One 13 (10): e0206261–15. doi:10.1371/journal.pone.0206261.
  • Liu, B.-L., J.-X. Cheng, X. Zhang, R. Wang, W. Zhang, H. Lin, X. Xiao, S. Cai, X.-Y. Chen, and H. Cheng. 2010. “Global Histone Modification Patterns as Prognostic Markers to Classify Glioma Patients.” Cancer Epidemiology Biomarkers & Prevention 19 (11): 2888–2896. doi:10.1158/1055-9965.EPI-10-0454.
  • Lorenzen, J. M., F. Martino, and T. Thum. 2012. “Epigenetic Modifications in Cardiovascular Diseases.” Basic Research in Cardiology 107 (2): 245. doi:10.1007/s00395-012-0245-9.
  • Liu, J., W. Lee, Z. Jiang, Z. Chen, S. Jhunjhunwala, P. M. Haverty, F. Gnad, et al. 2012. “Genome and Transcriptome Sequencing of Lung Cancers Reveal Diverse Mutational and Splicing Events.” Genome Research 22 (12): 2315–2327. doi:10.1101/gr.140988.112.
  • Lv, L., Y. Liu, P. Zhang, X. Zhang, J. Liu, T. Chen, P. Su, H. Li, and Y. Zhou. 2015. “The Nanoscale Geometry of TiO2 Nanotubes Influences the Osteogenic Differentiation of Human Adipose-Derived Stem Cells by Modulating H3K4 Trimethylation.” Biomaterials 39: 193–205. doi:10.1016/j.biomaterials.2014.11.002.
  • Ma, Z., D. Liu, S. Di, Z. Zhang, W. Li, J. Zhang, L. Xu, et al. 2019. “Histone Deacetylase 9 Downregulation Decreases Tumor Growth and Promotes Apoptosis in Non-Small Cell Lung Cancer after Melatonin Treatment.” Journal of Pineal Research 67 (2): e12587. doi:10.1111/jpi.12587.
  • Mazzone, R., C. Zwergel, M. Artico, S. Taurone, M. Ralli, A. Greco, and A. Mai. 2019. “The Emerging Role of Epigenetics in Human Autoimmune Disorders.” Clinical Epigenetics 11 (1): 34. doi:10.1186/s13148-019-0632-2.
  • McDaniel, S. L., and B. D. Strahl. 2017. “Shaping the Cellular Landscape with Set2/SETD2 Methylation.” Cellular and Molecular Life Sciences : CMLS 74 (18): 3317–3334. doi:10.1007/s00018-017-2517-x.
  • Meerson, A., and H. Yehuda. 2016. “Leptin and Insulin Up-Regulate miR-4443 to Suppress NCOA1 and TRAF4, and Decrease the Invasiveness of Human Colon Cancer Cells.” BMC Cancer 16 (1): 882. doi:10.1186/s12885-016-2938-1.
  • Meng, X., Y. Zhao, J. Liu, L. Wang, Z. Dong, T. Zhang, X. Gu, and Z. Zheng. 2019. “Comprehensive Analysis of Histone Modification-Associated Genes on Differential Gene Expression and Prognosis in Gastric Cancer.” Experimental and Therapeutic Medicine 18: 2219–2230. doi:10.3892/etm.2019.7808.
  • Miller, C. B., and M. Grunstein. 2006. “Genome-Wide Patterns of Histone Modifications in Yeast.” Nature Reviews. Molecular Cell Biology 7 (9): 657–666. doi:10.1038/nrm1986.
  • Monaghan, L., M. E. Massett, R. P. Bunschoten, S. Hoose, P.-A. Pirvan, R. M. J. Liskamp, H. G. Jorgensen, and X. Huaang. 2019. “The Emerging Role of H3K9me3 as a Potential Therapeutic Target in Acute Myeloid Leukemia.” Frontiers in Oncology 9: 1–16. doi:10.3389/fonc.2019.00705.
  • Mu, G., and F. Chen. 2020. “Oncogenic Roles of a Histone Methyltransferase SETDB2 In AML1-ETO Positive AML.” Cancer Management and Research 12: 783–792. doi:10.2147/CMAR.S227036.
  • Müller-Tidow, C., H.-U. Klein, A. Hascher, F. Isken, L. Tickenbrock, N. Thoennissen, S. Agrawal-Singh, Study Alliance Leukemia, et al. 2010. “Profiling of Histone H3 Lysine 9 Trimethylation Levels Predicts Transcription Factor Activity and Survival in Acute Myeloid Leukemia.” Blood 116 (18): 3564–3571. doi:10.1182/blood-2009-09-240978.
  • Nguyen, C. T., D. J. Weisenberger, M. Velicescu, F. A. Gonzales, J. C. Lin, and G. Liang. 2002. “Histone H3-Lysine 9 Methylation is Associated with Aberrant Gene Silencing in Cancer Cells and is Rapidly Reversed by 5-Aza-2’-Deoxycytidine.” Cancer Review 62: 6456–6461.
  • Nishida, N., and M. Kudo. 2013. “Oxidative Stress and Epigenetic Instability in Human Hepatocarcinogenesis.” Digestive Diseases 31 (5-6): 447–453. doi:10.1159/000355243.
  • Nishikawaji, T., Y. Akiyama, S. Shimada, K. Kojima, T. Kawano, Y. Eishi, Y. Yasuhito, and S. Tanaka. 2016. “Oncogenic Roles of the SETDB2 Histone Methyltransferase in Gastric Cancer.” Oncotarget 7 (41): 67251–67265. doi:10.18632/oncotarget.11625.
  • Park, Y. S., M. Y. Jin, Y. J. Kim, J. H. Yook, B. S. Kim, and S. J. Jang. 2008. “The Global Histone Modification Pattern Correlates with Cancer Recurrence and Overall Survival in Gastric Adenocarcinoma.” Annals of Surgical Oncology 15 (7): 1968–1976. doi:10.1245/s10434-008-9927-9.
  • PEN 2014. The Project on Emerging Nanotechnologies. Washington, DC: The Woodrow Wilson International Center for Scholars.
  • Pogribna, M., and G. Hammons. 2021. “Epigenetic Effects of Nanomaterials and Nanoparticles.” Journal of Nanobiotechnology 19 (1): 2. doi:10.1186/s12951-020-00740-0.
  • Pogribna, M., N. A. Koonce, A. Mathew, B. Word, A. K. Patri, B. Lyn-Cook, and G. Hammons. 2020. “Effect of Titanium Dioxide Nanoparticles on DNA Methylation in Multiple Human Cell Lines.” Nanotoxicology 14 (4): 534–553. doi:10.1080/17435390.2020.1723730.
  • Poziello, A., A. Nebbioso, H. G. Stunnenberg, J. H. A. Martens, V. Carafa, and L. Altucci. 2021. “Recent Insights into Histone Acetyltransferase-1: biological Function and Involvement in Pathogenesis.” Epigenetics 16 (8): 838–850. doi:10.1080/15592294.2020.1827723.
  • Qin, J., Z. Zeng, T. Luo, Q. Li, Y. Hao, and L. Chen. 2018. “Clinicopathological Significance of G9a Expression in Colorectal Carcinoma.” Oncology Letters 15 (6): 8611–8619. doi:10.3892/ol.2018.8446.
  • Ringrose, L., H. Ehret, and R. Paro. 2004. “Distinct Contributions of Histone H3 Lysine 9 and 27 Methylation to Locus-Specific Stability of Polycomb Complexes.” Molecular Cell 16 (4): 641–653. doi:10.1016/j.molcel.2004.10.015.
  • Rivenbark, A. G., W. B. Coleman, and B. D. Stahl. 2009. “Histone Methylation Patterns in Human Breast Cancer.” FASEB Journal 23 (1): S38.1.
  • Roberti, A., A. F. Valdes, R. Torrecilla, M. F. Fraga, and A. F. Fernandez. 2019. “Epigenetics in Cancer Therapy and Nanomedicine.” Clinical Epigenetics 11 (1): 81. doi:10.1186/s13148-019-0675-4.
  • Schmittgen, T. D., and K. J. Livak. 2008. “Analyzing Real-Time PCR Data by the Comparative C(T) method.” Nature Protocols 3 (6): 1101–1108. doi:10.1038/nprot.2008.73.
  • Seidel, C., A. Kirsch, C. Fontana, A. Visvikis, A. Remy, L. Gaté, C. Darne, and Y. Guichard. 2017. “Epigenetic Changes in the Early Stage of Silica-Induced Cell Transformation.” Nanotoxicology 11 (7): 923–935. doi:10.1080/17435390.2017.1382599.
  • Seligson, D. B., S. Horvath, M. A. McBrian, V. Mah, H. Yu, S. Tze, Q. Wang, D. Chia, L. Goodglick, and S. K. Kurdistani. 2009. “Global Levels of Histone Modifications Predict Prognosis in Different Cancers.” The American Journal of Pathology 174 (5): 1619–1628. doi:10.2353/ajpath.2009.080874.
  • Setyawati, M. I., P. K. Khoo, B. H. Eng, S. Xiong, X. Zhao, and G. K. Das. 2013. “Cytotoxic and Genotoxic Characterization of Titanium Dioxide, Gadolinium Oxide, and Poly(Lactic-co-Glycolic Acid) Nanoparticles in Human Fibroblasts.” Journal of Biomedical Materials Research A 101: 633–640.
  • Shakeel, M., F. Jabeen, S. Shabbir, M. S. Asghar, M. S. Khan, and A. S. Chaudhry. 2016. “Toxicity of Nano-Titanium Dioxide (TiO2-NP) through Various Routes of Exposure: A Review.” Biological Trace Element Research 172 (1): 1–36. doi:10.1007/s12011-015-0550-x.
  • Sharma, S., K. C. Sarathlal, and R. Taliyan. 2019. “Epigenetics in Neurodegenerative Diseases: The Role of Histone Deacetylases.” CNS & Neurological Disorders Drug Targets 18 (1): 11–18. doi:10.2174/1871527317666181004155136.
  • Shi, H., V. Magaye, V. Casltranove, and J. Zhao. 2013. “Titanium Dioxide Nanoparticles: A Review of Current Toxicological Data.” Particle Fibre Toxicology 10 (15): 1–33.
  • Shi, Y., F. Lan, C. Matson, P. Mulligan, J. R. Whetstine, P. A. Cole, R. A. Casero, and Y. Shi. 2004. “Histone Demethylation Mediated by the Nuclear Amine Oxidase Homolog LSD1.” Cell 119 (7): 941–953. doi:10.1016/j.cell.2004.12.012.
  • Sierra, M. I., A. Valdes, A. F. Fernandez, R. Torrecillas, and M. F. Fraga. 2016. “The Effect of Exposure to Nanoparticles and Nanomaterials on the Mammalian Epigenome.” International Journal of Nanomedicine 11: 6297–6306. doi:10.2147/IJN.S120104.
  • Song, B., T. Zhou, W. Yang, J. Liu, and L. Shao. 2016. “Contribution of Oxidative Stress to TiO2 Nanoparticle-Induced Toxicity.” Environmental Toxicology and Pharmacology 48: 130–140. doi:10.1016/j.etap.2016.10.013.
  • Stoccoro, A., H. L. Karlsson, F. Coppede, and L. Migliore. 2013. “Epigenetic Effects of Nano-Sized Materials.” Toxicology 313 (1): 3–14. doi:10.1016/j.tox.2012.12.002.
  • Surapaneni, S. K., S. Bashir, and K. Tikoo. 2018. “Gold Nanoparticles-Induced Cytotoxicity in Triple Negative Breast Cancer Involves Different Epigenetic Alterations Depending Upon the Surface Charge.” Scientific Reports 8 (1): 12295. doi:10.1038/s41598-018-30541-3.
  • Tamagawa, H., T. Oshima, M. Numata, N. Yamamoto, M. Shiozawa, S. Morinaga, Y. Nakamura, et al. 2013. “Global Histone Modification of H3K27 Correlates with the Outcomes in Patients with Metachronous Liver Metastasis of Colorectal Cancer.” European Journal of Surgical Oncology (EJSO) 39 (6): 655–661. doi:10.1016/j.ejso.2013.02.023.
  • Tarantini, A., R. Lanceleur, A. Mourot, M.-T. Lavault, G. Casterou, G. Jarry, K. Hogeveen, and V. Fessard. 2015. “Toxicity, Genotoxicity and Proinflammatory Effects of Amorphous Nanosilica in the Human Intestinal Caco-2 Cell Line.” Toxicology in Vitro 29 (2): 398–407. doi:10.1016/j.tiv.2014.10.023.
  • Taurozzi, J. S., and M. R. Wiesner. 2012a. Preparation of a Nanoscale TiO2 Aqueous Dispersion for Toxicological or Environmental Testing Version 1.2. NIST Special Publication 1200-3. Gaithersburg, MD: U.S. Dept. of Commerce, National Institute of Standards and Technology. doi:http://dx.doi.org/10.6028/NIST.SP.1200-3.
  • Taurozzi, J. S., and M. R. Wiesner. 2012b. Preparation of Nanoscale TiO2 Dispersions in Biological Test Media for Toxicological Assessment Version 1.1. NIST Special Publication 1200-4. Gaithersburg, MD: U.S. Dept. of Commerce, National Institute of Standards and Technology doi:http://dx.doi.org/10.6028/NIST.SP.1200-4.
  • Tzao, C., H.-J. Tung, J.-S. Jin, G.-H. Sun, H.-S. Hsu, B.-H. Chen, C.-P. Yu, and S.-C. Lee. 2009. “Prognostic Significance of Global Histone Modifications in Resected Squamous Cell Carcinoma of the Esophagus.” Modern Pathology 22 (2): 252–260. doi:10.1038/modpathol.2008.172.
  • Venza, M., M. Visalli, C. Beninati, G. V. De Gaetano, D. Teti, and I. Venza. 2015. “Cellular Mechanisms of Oxidative Stress and Action in Melanoma.” Oxidative Medicine and Cellular Longevity 2015: 481782. doi:10.1155/2015/481782.
  • Wang, J., B. G. Zhou, C. Chen, H. Yu, T. Wang, Y. Ma, G. Jia, et al. 2007. “Acute Toxicity and Biodistribution of Different Sized Titanium Dioxide Particles in Mice after Oral Administration.” Toxicology Letters 168 (2): 176–185. doi:10.1016/j.toxlet.2006.12.001.
  • Wang, J. X., Y. F. Li, G. Q. Zhou, B. Li, F. Jiao, C. Y. Chen, Y. X. Gao, Y. L. Zhao, and Z. F. Chai. 2007. “Influence of Intranasal Instilled Titanium Dioxide Nanoparticles on Monoaminergic Neurotransmitters of Female Mice at Different Exposure Time.” Zhonghau Yu Fang Yi Xue Za Zhi 41: 91–95.
  • Wang, S., and Y. Wang. 2013. “Peptidylarginine Deiminases in Citrullination, Gene Regulation, Health and Pathogenesis.” Biochimica et Biophysica Acta 1829 (10): 1126–1135. doi:10.1016/j.bbagrm.2013.07.003.
  • Wong, B. S. E., Q. Hu, and G. H. Baeg. 2017. “Epigenetic Modulations in Nanoparticle-Mediated Toxicity.” Food and Chemical Toxicology 109 (Pt 1): 746–752. doi:10.1016/j.fct.2017.07.006.
  • Xu, G., Z. Yang, Y. Ding, Y. Liu, L. Zhang, B. Wang, M. Tang, et al. 2021. “The Deubiquitinase USP16 Functions as an Oncogenic Factor in K-RAS-Driven Lung Tumorigenesis.” Oncogene 40 (36): 5482–5494. doi:10.1038/s41388-021-01964-6.
  • Xu, Q., X. Liu, S. Zhu, X. Hu, H. Niu, X. Zhang, D. Zhu, E. U. Nesa, K. Tian, and H. Yuan. 2018. “Hyper-Acetylation Contributes to the Sensitivity of Chemo-Resistant Prostate Cancer Cells to Histone Deacetylase Inhibitor Trichostatin A.” Journal of Cellular and Molecular Medicine 22 (3): 1909–1922. doi:10.1111/jcmm.13475.
  • Yang, P., L. Guo, Z. J. Duan, C. G. Tepper, L. Xue, X. Chen, H.-J. Kung, A. C. Gao, J. X. Zou, and H-W. Chen. 2012. “Histone Methyltransferase NSD2/MMSET Mediates Constitutive NF-κB Signaling for Cancer Cell Proliferation, Survival, and Tumor Growth via a Feed-Forward Loop.” Molecular and Cellular Biology 32 (15): 3121–3131. doi:10.1128/MCB.00204-12.
  • Yokoyama, Y., M. Hieda, Y. Nishioka, A. Matsumoto, S. Higashi, H. Kimura, H. Yamamoto, M. Mori, S. Matsuura, and N. Matsuura. 2013. “Cancer-Associated Upregulation of Histone H3 Lysine 9 Trimethylation Promotes Cell Motility In Vitro and Drives Tumor Formation In Vivo.” Cancer Science 104 (7): 889–895. doi:10.1111/cas.12166.
  • Zhang, T., E. Du, Y. Liu, J. Cheng, Z. Zhang, Y. Xu, S. Qi, and Y. Chen. 2020. “Anticancer Effects of Zinc Oxide Nanoparticles through Altering the Methylation Status of Histone on Bladder Cancer Cells.” International Journal of Nanomedicine 15: 1457–1468. doi:10.2147/IJN.S228839.
  • Zhang, X., W. Novera, Y. Zhang, and L.-W. Deng. 2017. “MLL5 (KMT2E): Structure, Function, and Clinical Relevance.” Cellular and Molecular Life Sciences : CMLS 74 (13): 2333–2344. doi:10.1007/s00018-017-2470-8.
  • Zhang, X., W. Li, and Z. Yang. 2015. “Toxicology of Nanosized Titanium Dioxide: An Update.” Archives of Toxicology 89 (12): 2207–2217. doi:10.1007/s00204-015-1594-6.
  • Zhao, X., F. Takabayashi, and Y. Ibuki. 2016. “Coexposure to Silver Nanoparticles and Ultraviolet a Synergistically Enhances the Phosphorylation of Histone H2AX.” Journal of Photochemistry and Photobiology. B, Biology 162: 213–222. doi:10.1016/j.jphotobiol.2016.06.046.
  • Zhen, L., L. Gui-lan, Y. Ping, H. Jin, and W. Ya-li. 2010. “The Expression of H3K9Ac, H3K14Ac, and H4K20TriMe in Epithelial Ovarian Tumors and the Clinical Significance.” International Journal of Gynecological Cancer 20 (1): 82–86.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.