137
Views
3
CrossRef citations to date
0
Altmetric
Articles

In vitro and in silico study of mixtures cytotoxicity of metal oxide nanoparticles to Escherichia coli: a mechanistic approach

ORCID Icon, , , & ORCID Icon
Pages 566-579 | Received 20 Apr 2022, Accepted 07 Sep 2022, Published online: 23 Sep 2022

References

  • Administrator Memo Prioritizing Efforts to Reduce Animal Testing. 2019. (accessed April 15 10, 2022). https://www.epa.gov/sites/default/files/2019-09/documents/image2019-09-09-231249.pdf
  • Arvidsson, R., A. Baun, A. Furberg, S. F. Hansen, and S. Molander. 2018. “Proxy Measures for Simplified Environmental Assessment of Manufactured Nanomaterials.” Environmental Science & Technology 52 (23): 13670–13680. doi:10.1021/acs.est.8b05405.
  • Chung, E. J., L. Leon, and C. Rinaldi. 2019. Nanoparticles for Biomedical Applications, Fundamental Concepts, Biological Interactions and Clinical Applications. Amsterdam, The Netherlands: Elsevier, 440.
  • Dasari, T. P., K. Pathakoti, and H. M. Hwang. 2013. “Determination of the Mechanism of Photoinduced Toxicity of Selected Metal Oxide Nanoparticles (ZnO, CuO, Co3O4 and TiO2) to E. coli Bacteria.” Journal of Environmental Sciences 25 (5): 882–888. doi:10.1016/S1001-0742(12)60152-1.
  • De, P., S. Kar, K. Roy, and J. Leszczynski. 2018. “Second Generation Periodic Table Based Descriptors to Encode Toxicity of Metal Oxide Nanoparticles to Multiple Species: QSTR Modeling for Exploration of Toxicity Mechanisms.” Environmental Science: Nano 5 (11): 2742–2760. doi:10.1039/C8EN00809D.
  • Erdem, A., D. Metzler, D. Cha, and C. Huang. 2015. “Inhibition of Bacteria by Photocatalytic nano-TiO2 Particles in the Absence of Light.” International Journal of Environmental Science and Technology 12 (9): 2987–2996. doi:10.1007/s13762-014-0729-2.
  • Forest, V. J. F. Hochepied, J, and Pourchez, J. 2019. “Importance of Choosing Relevant Biological End Points to Predict Nanoparticle Toxicity with Computational Approaches for Human Health Risk Assessment.” Chemical Research in Toxicology 32 (7): 1320–1326. ̧ doi:10.1021/acs.chemrestox.9b00022.
  • Gajewicz, A. 2017. “What If the Number of Nanotoxicity Data is Too Small for Developing Predictive Nano-QSAR Models? An Alternative Read-across Based Approach for Filling Data Gaps.” Nanoscale 9 (24): 8435–8448. doi:10.1039/c7nr02211e.
  • Gajewicz, A., T. Puzyn, K. Odziomek, P. Urbaszek, A. Haase, C. Riebeling, A. Luch, et al. 2018. “Decision Tree Models to Classify Nanomaterials according to the DF4 nanoGrouping Scheme.” Nanotoxicology 12 (1): 1–17. doi:10.1080/17435390.2017.1415388.
  • Gaudin, T., P. Rotureau, and G. Fayet. 2015. “Mixture Descriptors toward the Development of Quantitative Structure–Property Relationship Models for the Flash Points of Organic Mixtures.” Industrial & Engineering Chemistry Research 54 (25): 6596–6604. doi:10.1021/acs.iecr.5b01457.
  • Global Nanoparticle Drug Delivery Market, Dosage, Price and Clinical Pipeline Outlook 2024. 2020. (accessed April 15, 2022). https://www.reportlinker.com/p05376452/Global-Nanoparticle-Drug-Delivery-Market-Dosage-Price-and-Clinical-Pipeline-Outlook.html
  • Golbraikh, A, and A. Tropsha. 2002. “Beware of q2!.” Journal of Molecular Graphics and Modelling 20 (4): 269–276. doi:10.1016/S1093-3263(01)00123-1.
  • Gramatica, P. 2020. “Principles of QSAR Modeling: Comments and Suggestions from Personal Experience.” International Journal of Quantitative Structure-Property Relationships 5 (3): 61–97. doi:10.4018/IJQSPR.20200701.oa1.
  • Heinlaan, M., A. Ivask, I. Blinova, H. C. Dubourguier, and A. Kahru. 2008. “Toxicity of Nanosized and Bulk ZnO, CuO and TiO2 to Bacteria Vibrio fischeri and Crustaceans Daphnia Magna and Thamnocephalusplatyurus.” Chemosphere 71 (7): 1308–1316. doi:10.1016/j.chemosphere.2007.11.047.
  • Hong, H., V. Adam, and B. Nowack. 2021. “Form-Specific and Probabilistic Environmental Risk Assessment of 3 Engineered Nanomaterials (Nano-Ag, Nano-TiO2, and Nano-ZnO) in European Freshwaters.” Environmental Toxicology and Chemistry 40 (9): 2629–2639. doi:10.1002/etc.5146.
  • Jiang, W., H. Mashayekhi, and B. S. Xing. 2009. “Bacterial Toxicity Comparison between Nano- and Micro-Scaled Oxide Particles.” Environmental Pollution 157 (5): 1619–1625. doi:10.1016/j.envpol.2008.12.025.
  • Kar, S., A. Gajewicz, T. Puzyn, K. Roy, and J. Leszczynski. 2014. “Periodic Table-Based Descriptors to Encode Cytotoxicity Profile of Metal Oxide Nanoparticles: A Mechanistic QSTR Approach.” Ecotoxicology and Environmental Safety 107: 162–169. doi:10.1016/j.ecoenv.2014.05.026.
  • Kar, S., A. Gajewicz, K. Roy, J. Leszczynski, and T. Puzyn. 2016. “Extrapolating between Toxicity Endpoints of Metal Oxide Nanoparticles: Predicting Toxicity to Escherichia coli and Human Keratinocyte Cell Line (HaCaT) with Nano-QTTR.” Ecotoxicology and Environmental Safety 126: 238–244. doi:10.1016/j.ecoenv.2015.12.033.
  • Kar, Supratik, and Jerzy Leszczynski. 2019. “Exploration of Computational Approaches to Predict the Toxicity of Chemical Mixtures.” Toxics 7 (1): 15. doi:10.3390/toxics7010015.
  • Kar, S, and J. Leszczynski. 2021. “QSAR and Machine Learning Modeling of Toxicity of Nanomaterials: A Risk Assessment Approach.” In Health and Environmental Safety of Nanomaterials: Polymer Nanocomposites and Other Materials Containing Nanoparticles (Njuguna, J., Pielichowski, K., Zhu, H., Eds.), 2nd edition. Duxford, UK: Elsevier, 417–441.
  • Kar, SJ., and Leszczynski, J. 2022. “Computational Approaches in Assessments of Mixture Toxicity.” Current Opinion in Toxicology 29: 31–35. doi:10.1016/j.cotox.2022.01.004.
  • Kar, S., K. Pathakoti, P. B. Tchounwou, D. Leszczynska, and J. Leszczynski. 2021. “Evaluating the Cytotoxicity of a Large Pool of Metal Oxide Nanoparticles to Escherichia col : Mechanistic Understanding through in Vitro and in Silico Studies.” Chemosphere 264 (Pt 1): 128428. doi:10.1016/j.chemosphere.2020.128428.
  • Keller, A. A, and A. Lazareva. 2014. “Predicted Releases of Engineered Nanomaterials: From Global to Regional to Local.” Environmental Science & Technology Letters 1 (1): 65–70. doi:10.1021/ez400106t.
  • Lamon, L., K. Aschberger, D. Asturiol, A. Richarz, and A. Worth. 2019. “Grouping of Nanomaterials to Read-Across Hazard Endpoints: A Review.” Nanotoxicology 13 (1): 100–118. doi:10.1080/17435390.2018.1506060.
  • Mikolajczyk, A., A. Gajewicz, E. Mulkiewicz, B. Rasulev, M. Marchelek, M. Diak, S. Hirano, A. Zaleska-Medynska, and T. Puzyn. 2018. “Nano-QSAR Modeling for Ecosafe Design of Heterogeneous TiO 2-Based Nano-Photocatalysts.” Environmental Science: Nano 5 (5): 1150–1160. doi:10.1039/C8EN00085A.
  • Miseljic, M, and S. I. Olsen. 2014. “Life-Cycle Assessment of Engineered Nanomaterials: A Literature Review of Assessment Status.” Journal of Nanoparticle Research 16 (6): 2427. doi:10.1007/s11051-014-2427-x.
  • Nikolova, M. P, and M. S. Chavali. 2020. “Metal Oxide Nanoparticles as Biomedical Materials.” Biomimetics (Basel) 5 (2): 27. doi:10.3390/biomimetics5020027.
  • Ojha, P. K., S. Kar, K. Roy, and J. Leszczynski. 2019. “Toward Comprehension of Multiple Human Cells Uptake of Engineered Nano Metal Oxides: Quantitative Inter Cell Line Uptake Specificity (QICLUS) Modeling.” Nanotoxicology 13 (1): 14–34. doi:10.1080/17435390.2018.1529836.
  • Osler, G. H, and M. Sommerkorn. 2007. “Toward a Complete Soil C and N Cycle: Incorporating the Soil Fauna.” Ecology 88 (7): 1611–1621. doi:10.1890/06-1357.1.
  • Pathakoti, K., H. J. Huang, J. D. Watts, X. He, and H. M. Hwang. 2014. “Using Experimental Data of Escherichia coli to Develop a QSAR Model for Predicting the Photo-Induced Cytotoxicity of Metal Oxide Nanoparticles.” Journal of Photochemistry and Photobiology B: Biology 130: 234–240. doi:10.1016/j.jphotobiol.2013.11.023.
  • Piccinno, F., F. Gottschalk, S. Seeger, and B. Nowack. 2012. “Industrial Production Quantities and Uses of Ten Engineered Nanomaterials in Europe and the World.” Journal of Nanoparticle Research 14 (9): 1109. doi:10.1007/s11051-012-1109-9.
  • Puzyn, T., B. Rasulev, A. Gajewicz, X. Hu, T. P. Dasari, A. Michalkova, H. M. Hwang, A. A. Toropov, D. Leszczynska, and J. Leszczynski. 2011. “Using nano-QSAR to Predict the Cytotoxicity of Metal Oxide Nanoparticles.” Nature Nanotechnology 6 (3): 175–178. doi:10.1038/nnano.2011.10.
  • Roy, K., I. Mitra, S. Kar, P. K. Ojha, R. N. Das, and H. Kabir. 2012. “Comparative Studies on Some Metrics for External Validation of QSPR Models.” Journal of Chemical Information 52 (2): 396–408.
  • Roy, J., P. K. Ojha, and K. Roy. 2019. “Risk Assessment of Heterogeneous TiO2-Based Engineered Nanoparticles (NPs): a QSTR Approach Using Simple Periodic Table Based Descriptors.” Nanotoxicology 13 (5): 701–716. doi:10.1080/17435390.2019.1593543.
  • Roy, K, and S. Kar. 2015. “How to Judge Predictive Quality of Classification and Regression Based QSAR Models.” ?.” In: Frontiers in Computational Chemistry. Haq, Z., and Madura, J. D., (Eds.). UAE: Bentham Science Publishers, Chapter 3 in Vol. 2, 71–120.
  • Roy, K., S. Kar, and P. Ambure. 2015. “On a Simple Approach for Determining Applicability Domain of QSAR Models.” Chemometrics and Intelligent Laboratory Systems 145: 22–29. doi:10.1016/j.chemolab.2015.04.013.
  • Warheit, D. B. 2018. “Hazard and Risk Assessment Strategies for Nanoparticle Exposures: How Far Have we Come in the past 10 Years?” F1000Research 7: 376. doi:10.12688/f1000research.12691.1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.