166
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Assessment of genotoxicity induced by subchronic exposure to graphene in HaCaT human skin cell line

, , , &

References

  • Ahmed, A., M. A. Jalil, M. M. Hossain, M. Moniruzzaman, B. Adak, M. T. Islam, M. S. Parvez, and S. Mukhopadhyay. 2020. “A PEDOT:PSS and Graphene-Clad Smart Textile-Based Wearable Electronic Joule Heater with High Thermal Stability.” Journal of Materials Chemistry C 8 (45): 16204–16215. doi:10.1039/D0TC03368E.
  • Ajiteru, O., M. T. Sultan, Y. J. Lee, Y. B. Seo, H. Hong, J. S. Lee, H. Lee, et al. 2020. “A 3D Printable Electroconductive Biocomposite Bioink Based on Silk Fibroin-Conjugated Graphene Oxide.” Nano Letters 20 (9): 6873–6883. doi:10.1021/acs.nanolett.0c02986.
  • Akhavan, O., E. Ghaderi, H. Emamy, and F. Akhavan. 2013. “Genotoxicity of Graphene Nanoribbons in Human Mesenchymal Stem Cells.” Carbon 54: 419–431. doi:10.1016/j.carbon.2012.11.058.
  • Altankov, G., J. Hecht, and N. Dimoudis. 2001. “Serum-Free Cultured Keratinocytes Fail to Organize Fibronectin Matrix and Possess Different Distribution of Beta-1 Integrins.” Experimental Dermatology 10 (2): 80–89. doi:10.1034/j.1600-0625.2001.010002080.x.
  • Basheer, F., A. R. Melge, A. Sasidharan, S. V. Nair, K. Manzoor, and C. G. Mohan. 2018. “Computational Simulations and Experimental Validation of Structure- Physicochemical Properties of Pristine and Functionalized Graphene: Implications for Adverse Effects on p53 Mediated DNA Damage Response.” International Journal of Biological Macromolecules 110: 540–549. doi:10.1016/j.ijbiomac.2017.10.106.
  • Bengtson, S., K. Kling, A. M. Madsen, A. W. Noergaard, N. R. Jacobsen, P. A. Clausen, B. Alonso, et al. 2016. “No Cytotoxicity or Genotoxicity of Graphene and Graphene Oxide in Murine Lung Epithelial FE1 Cells in Vitro.” Environmental and Molecular Mutagenesis 57 (6): 469–482. doi:10.1002/em.22017.
  • Blackford, A. N., and S. P. Jackson. 2017. “ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response.” Molecular Cell 66 (6): 801–817. doi:10.1016/j.molcel.2017.05.015.
  • Borràs, M., G. Armengol, M. De Cabo, J.-F. Barquinero, and L. Barrios. 2015. “Comparison of Methods to Quantify Histone H2AX Phosphorylation and Its Usefulness for Prediction of Radiosensitivity.” International Journal of Radiation Biology 91 (12): 915–924. doi:10.3109/09553002.2015.1101501.
  • Boukamp, P., R. T. Petrussevska, D. Breitkreutz, J. Hornung, A. Markham, and N. E. Fusenig. 1988. “Normal Keratinization in a Spontaneously Immortalized Aneuploid Human Keratinocyte Cell Line.” The Journal of Cell Biology 106 (3): 761–771. doi:10.1083/jcb.106.3.761.
  • Boukamp, P., S. Popp, S. Altmeyer, A. Hülsen, C. Fasching, T. Cremer, and N. E. Fusenig. 1997. “Sustained Nontumorigenic Phenotype Correlates with a Largely Stable Chromosome Content during Long-Term Culture.” Genes Chromosomes Cancer 19 (4): 201–214.
  • Bowman, L., V. Castranova, and M. Ding. 2012. “Single Cell Gel Electrophoresis Assay (Comet Assay) for Evaluating Nanoparticles-Induced DNA Damage in Cells.” Methods in Molecular Biology 906: 415–422.
  • Broustas, C. G., and H. B. Lieberman. 2014. “DNA Damage Response Genes and the Development of Cancer Metastasis.” Radiation Research 181 (2): 111–130. doi:10.1667/RR13515.1.
  • Brown, A., and N. Hondow. 2013. “Electron Microscopy of Nanoparticles in Cells.” Nanomedicine 5:95–120.
  • Burgum, M. J., M. J. D. Clift, S. J. Evans, N. Hondow, M. Miller, S. B. Lopez, A. Williams, A. Tarat, G. J. Jenkins, and S. H. Doak. 2021. “In Vitro Primary‐Indirect Genotoxicity in Bronchial Epithelial Cells Promoted by Industrially Relevant Few‐Layer Graphene.” Small 17 (15): 2002551. doi:10.1002/smll.202002551.
  • Bussy, C., and K. Kostarelos. 2017. “Culture Media Critically Influence Graphene Oxide Effects on Plasma Membranes.” Chemistry 2 (3): 322–323. doi:10.1016/j.chempr.2017.01.015.
  • Cavallo, D., C. Fanizza, C. L. Ursini, S. Casciardi, E. Paba, A. Ciervo, A. M. Fresegna, et al. 2012. “Multiwalled Carbon Nanotubes Induce Cytotoxicity and Genotoxicity in Human Lung Epithelial Cells.” Journal of Applied Toxicology 32 (6): 454–464. doi:10.1002/jat.2711.
  • Chatterjee, N., J. Yang, and J. Choi. 2016. “Differential Genotoxic and Epigenotoxic Effects of Graphene Family Nanomaterials (GFNs) in Human Bronchial Epithelial Cells.” Mutation Research. Genetic Toxicology and Environmental Mutagenesis 798–799: 1–10. doi:10.1016/j.mrgentox.2016.01.006.
  • Chong, Y., C. Ge, Z. Yang, J. A. Garate, Z. Gu, J. K. Weber, J. Liu, and R. Zhou. 2015. “Reduced Cytotoxicity of Graphene Nanosheets Mediated by Blood-Protein Coating.” ACS Nano 9 (6): 5713–5724. doi:10.1021/nn5066606.
  • Choudhuri, I., P. Bhauriyal, and B. Pathak. 2019. “Recent Advances in Graphene-like 2D Materials for Spintronics Applications.” Chemistry of Materials 31 (20): 8260–8285. doi:10.1021/acs.chemmater.9b02243.
  • Cicchetti, R., M. Divizia, F. Valentini, and G. Argentin. 2011. “Effects of Single-Wall Carbon Nanotubes in Human Cells of the Oral Cavity: Geno-Cytotoxic Risk.” Toxicology In Vitro 25 (8): 1811–1819.
  • Collins, A. R. 2014. “Measuring Oxidative Damage to DNA and Its Repair with the Comet Assay.” Biochimica et Biophysica Acta 1840 (2): 794–800.
  • Deyrieux, A. F., and V. G. Wilson. 2007. “In Vitro Culture Conditions to Study Keratinocyte Differentiation Using the HaCaT Cell Line.” Cytotechnology 54 (2): 77–83. doi:10.1007/s10616-007-9076-1.
  • Domenech, J., A. Rodríguez-Garraus, A. López de Cerain, A. Azqueta, and J. Catalán. 2022. “Genotoxicity of Graphene-Based Materials.” Nanomaterials 12 (11): 1795. doi:10.3390/nano12111795.
  • Duan, G., S-g Kang, X. Tian, J. A. Garate, L. Zhao, C. Ge, and R. Zhou. 2015. “Protein Corona Mitigates the Cytotoxicity of Graphene Oxide by Reducing Its Physical Interaction with Cell Membrane.” Nanoscale 7 (37): 15214–15224. doi:10.1039/c5nr01839k.
  • El-Yamany, N. A., F. F. Mohamed, T. A. Salaheldin, A. A. Tohamy, W. N. Abd El-Mohsen, and A. S. Amin. 2017. “Graphene Oxide Nanosheets Induced Genotoxicity and Pulmonary Injury in Mice.” Experimental and Toxicologic Pathology 69 (6): 383–392. doi:10.1016/j.etp.2017.03.002.
  • Ema, M., M. Gamo, and K. Honda. 2017. “A Review of Toxicity Studies on Graphene-Based Nanomaterials in Laboratory Animals.” Regulatory Toxicology and Pharmacology 85: 7–24. doi:10.1016/j.yrtph.2017.01.011.
  • Ergoktas, M. S., G. Bakan, P. Steiner, C. Bartlam, Y. Malevich, E. Ozden-Yenigun, G. He, et al. 2020. “Graphene-Enabled Adaptive Infrared Textiles.” Nano Letters 20 (7): 5346–5352. doi:10.1021/acs.nanolett.0c01694.
  • Fadeel, B., C. Bussy, S. Merino, E. Vázquez, E. Flahaut, F. Mouchet, L. Evariste, et al. 2018. “Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment.” ACS Nano 12 (11): 10582–10620. doi:10.1021/acsnano.8b04758.
  • Franqui, L. S., M. A. De Farias, R. V. Portugal, C. A. R. Costa, R. R. Domingues, A. G. Souza Filho, V. R. Coluci, A. F. P. Leme, and D. S. T. Martinez. 2019. “Interaction of Graphene Oxide with Cell Culture Medium: Evaluating the Fetal Bovine Serum Protein Corona Formation towards in Vitro Nanotoxicity Assessment and Nanobiointeractions.” Materials Science and Engineering C100: 363–377.
  • Frontiñan-Rubio, J., E. Llanos-González, V. J. González, E. Vázquez, and M. Durán-Prado. 2022. “Subchronic Graphene Exposure Reshapes Skin Cell Metabolism.” Journal of Proteome Research 21 (7): 1675–1685. doi:10.1021/acs.jproteome.2c00064.
  • Frontiñán-Rubio, J., M. V. Gómez, C. Martín, J. M. González-Domínguez, M. Durán-Prado, and E. Vázquez. 2018. “Differential Effects of Graphene Materials on the Metabolism and Function of Human Skin Cells.” Nanoscale 10 (24): 11604–11615. doi:10.1039/C8NR00897C.
  • Frontiñan-Rubio, J., M. V. Gomez, V. J. González, M. Durán-Prado, and E. Vázquez. 2020. “Sublethal Exposure of Small Few-Layer Graphene Promotes Metabolic Alterations in Human Skin Cells.” Scientific Reports 10 (1): 18407. doi:10.1038/s41598-020-75448-0.
  • Fujita, K., S. Take, R. Tani, J. Maru, S. Obara, and S. Endoh. 2018. “Assessment of Cytotoxicity and Mutagenicity of Exfoliated Graphene.” Toxicology in Vitro 52: 195–202. doi:10.1016/j.tiv.2018.06.016.
  • Fusco, L., M. Garrido, C. Martín, S. Sosa, C. Ponti, A. Centeno, B. Alonso, et al. 2020. “Skin Irritation Potential of Graphene-Based Materials Using a Non-Animal Test.” Nanoscale 12 (2): 610–622. doi:10.1039/C9NR06815E.
  • González, V. J., A. M. Rodríguez, V. León, J. Frontiñán-Rubio, J. L. G. Fierro, M. Durán-Prado, A. B. Muñoz-García, M. Pavone, and E. Vázquez. 2018. “Sweet Graphene: exfoliation of Graphite and Preparation of Glucose-Graphene Cocrystals through Mechanochemical Treatments.” Green Chemistry 20 (15): 3581–3592. doi:10.1039/C8GC01162A.
  • González-Domínguez, J. M., V. León, M. I. Lucío, M. Prato, and E. Vázquez. 2018. “Production of Ready-to-Use Few-Layer Graphene in Aqueous Suspensions.” Nature Protocols 13 (3): 495–506. doi:10.1038/nprot.2017.142.
  • Graham-Evans, B., H. H. Cohly, H. Yu, and P. B. Tchounwou. 2004. “Arsenic-Induced Genotoxic and Cytotoxic Effects in Human Keratinocytes, Melanocytes and Dendritic Cells.” International Journal of Environmental Research and Public Health 1 (2): 83–89. doi:10.3390/ijerph2004020083.
  • Gruosso, T., V. Mieulet, M. Cardon, B. Bourachot, Y. Kieffer, F. Devun, T. Dubois, et al. 2016. “Chronic Oxidative Stress Promotes H2AX Protein Degradation and Enhances Chemosensitivity in Breast Cancer Patients.” EMBO Molecular Medicine 8 (5): 527–549. doi:10.15252/emmm.201505891.
  • Gurcan, C., H. Taheri, A. Bianco, L. G. Delogu, and A. Yilmazer. 2019. “A Closer Look at the Genotoxicity of Graphene Based Materials.” Journal of Physics: Materials 3 (1): 014007.
  • Gyori, B. M., G. Venkatachalam, P. S. Thiagarajan, D. Hsu, and M. V. Clement. 2014. “OpenComet: An Automated Tool for Comet Assay Image Analysis.” Redox Biology 2: 457–465. doi:10.1016/j.redox.2013.12.020.
  • Halappanavar, S., P. Nymark, H. F. Krug, M. J. D. Clift, B. Rothen-Rutishauser, and U. Vogel. 2021. “Non-Animal Strategies for Toxicity Assessment of Nanoscale Materials: Role of Adverse Outcome Pathways in the Selection of Endpoints.” Small 17 (15): e2007628. doi:10.1002/smll.202007628.
  • Hashemi, E., O. Akhavan, M. Shamsara, R. Rahighi, A. Esfandiar, and A. R. Tayefeh. 2014. “Cyto and Genotoxicities of Graphene Oxide and Reduced Graphene Oxide Sheets on Spermatozoa.” RSC Advances 4 (52): 27213. doi:10.1039/c4ra01047g.
  • Hashemi, E., O. Akhavan, M. Shamsara, S. Ansari Majd, M. H. Sanati, M. Daliri Joupari, and A. Farmany. 2020. “Graphene Oxide Negatively Regulates Cell Cycle in Embryonic Fibroblast Cells.” International Journal of Nanomedicine 15: 6201–6209. doi:10.2147/IJN.S260228.
  • He, Y., B. Jiao, and H. Tang. 2014. “Interaction of Single-Stranded DNA with Graphene Oxide: fluorescence Study and Its Application for S1 Nuclease Detection.” RSC Advances 4 (35): 18294–18300. doi:10.1039/C4RA01102C.
  • Hirsch, C., J. P. Kaiser, F. Wessling, K. Fischer, M. Roesslein, P. Wick, and H. F. Krug. 2011. “A Novel Comprehensive Evaluation Platform to Assess Nanoparticle Toxicityin Vitro.” Journal of Physics 304:012053.
  • Hu, W., C. Peng, M. Lv, X. Li, Y. Zhang, N. Chen, C. Fan, and Q. Huang. 2011. “Protein Corona-Mediated Mitigation of Cytotoxicity of Graphene Oxide.” ACS Nano 5 (5): 3693–3700. doi:10.1021/nn200021j.
  • Hu, X., M. Tian, T. Xu, X. Sun, B. Sun, C. Sun, X. Liu, X. Zhang, and L. Qu. 2020. “Multiscale Disordered Porous Fibers for Self-Sensing and Self-Cooling Integrated Smart Sportswear.” ACS Nano 14 (1): 559–567. doi:10.1021/acsnano.9b06899.
  • Jacobsen, N. R., G. Pojana, P. White, P. Moller, C. A. Cohn, K. S. Korsholm, U. Vogel, A. Marcomini, S. Loft, and H. Wallin. 2008. “Genotoxicity, Cytotoxicity, and Reactive Oxygen Species Induced by Single-Walled Carbon Nanotubes and C(60) Fullerenes in the FE1-Mutatrade markMouse Lung Epithelial Cells.” Environmental and Molecular Mutagenesis 49 (6): 476–487. doi:10.1002/em.20406.
  • Jiang, T., T. Kuila, N. H. Kim, B.-C. Ku, and J. H. Lee. 2013. “Enhanced Mechanical Properties of Silanized Silica Nanoparticle Attached Graphene Oxide/Epoxy Composites.” Composites Science and Technology 79: 115–125. doi:10.1016/j.compscitech.2013.02.018.
  • Kabiri Ameri, S., R. Ho, H. Jang, L. Tao, Y. Wang, L. Wang, D. M. Schnyer, D. Akinwande, and N. Lu. 2017. “Graphene Electronic Tattoo Sensors.” ACS Nano 11 (8): 7634–7641.
  • Karbaschi, M., Y. Ji, A. M. S. Abdulwahed, A. Alohaly, J. F. Bedoya, S. L. Burke, T. M. Boulos, H. G. Tempest, and M. S. Cooke. 2019. “Evaluation of the Major Steps in the Conventional Protocol for the Alkaline Comet Assay.” International Journal of Molecular Sciences 20 (23): 6072.
  • Kohl, Y., E. Rundén-Pran, E. Mariussen, M. Hesler, N. El Yamani, E. M. Longhin, and M. Dusinska. 2020. “Genotoxicity of Nanomaterials: Advanced in Vitro Models and High Throughput Methods for Human Hazard Assessment—a Review.” Nanomaterials 10 (10): 1911. doi:10.3390/nano10101911.
  • Kostarelos, K. 2016. “Translating Graphene and 2D Materials into Medicine.” Nature Reviews Materials 1 (11): 16084. doi:10.1038/natrevmats.2016.84.
  • Lee, A. C., B. E. Fenster, H. Ito, K. Takeda, N. S. Bae, T. Hirai, Z. X. Yu, V. J. Ferrans, B. H. Howard, and T. Finkel. 1999. “Ras Proteins Induce Senescence by Altering the Intracellular Levels of Reactive Oxygen Species.” The Journal of Biological Chemistry 274 (12): 7936–7940. doi:10.1074/jbc.274.12.7936.
  • Lee, H., T. K. Choi, Y. B. Lee, H. R. Cho, R. Ghaffari, L. Wang, H. J. Choi, et al. 2016. “A Graphene-Based Electrochemical Device with Thermoresponsive Microneedles for Diabetes Monitoring and Therapy.” Nature Nanotechnology 11 (6): 566–572. doi:10.1038/nnano.2016.38.
  • Leonardo, T. R., J. Shi, D. Chen, H. M. Trivedi, and L. Chen. 2020. “Differential Expression and Function of Bicellular Tight Junctions in Skin and Oral Wound Healing.” International Journal of Molecular Sciences 21 (8): 2966. doi:10.3390/ijms21082966.
  • Li, J., X. Zhang, J. Jiang, Y. Wang, H. Jiang, J. Zhang, X. Nie, and B. Liu. 2019. “Systematic Assessment of the Toxicity and Potential Mechanism of Graphene Derivatives in Vitro and in Vivo.” Toxicological Sciences 167 (1): 269–281. doi:10.1093/toxsci/kfy235.
  • Lindberg, H. K., G. C. Falck, S. Suhonen, M. Vippola, E. Vanhala, J. Catalan, K. Savolainen, and H. Norppa. 2009. “Genotoxicity of Nanomaterials: DNA Damage and Micronuclei Induced by Carbon Nanotubes and Graphite Nanofibres in Human Bronchial Epithelial Cells in Vitro.” Toxicology Letters 186 (3): 166–173. doi:10.1016/j.toxlet.2008.11.019.
  • Lipani, L., B. G. R. Dupont, F. Doungmene, F. Marken, R. M. Tyrrell, R. H. Guy, and A. Ilie. 2018. “Non-Invasive, Transdermal, Path-Selective and Specific Glucose Monitoring via a Graphene-Based Platform.” Nature Nanotechnology 13 (6): 504–511. doi:10.1038/s41565-018-0112-4.
  • Lohcharoenkal, W., L. Wang, T. A. Stueckle, C. Z. Dinu, V. Castranova, Y. Liu, and Y. Rojanasakul. 2013. “Chronic Exposure to Carbon Nanotubes Induces Invasion of Human Mesothelial Cells through Matrix Metalloproteinase-2.” ACS Nano 7 (9): 7711–7723. doi:10.1021/nn402241b.
  • Migliore, L., D. Saracino, A. Bonelli, R. Colognato, M. R. D'Errico, A. Magrini, A. Bergamaschi, and E. Bergamaschi. 2010. “Carbon Nanotubes Induce Oxidative DNA Damage in RAW 264.7 Cells.” Environmental and Molecular Mutagenesis 51 (4): 294–303.
  • Mohamed, H. R. H., M. Welson, A. E. Yaseen, and A. A. El-Ghor. 2020. “Estimation of Genomic Instability and Mutation Induction by Graphene Oxide Nanoparticles in Mice Liver and Brain Tissues.” Environmental Science and Pollution Research 27 (1): 264–278. doi:10.1007/s11356-019-06930-0.
  • Mukherjee, S. P., A. R. Gliga, B. Lazzaretto, B. Brandner, M. Fielden, C. Vogt, L. Newman, et al. 2018. “Graphene Oxide is Degraded by Neutrophils and the Degradation Products Are Non-Genotoxic.” Nanoscale 10 (3): 1180–1188. doi:10.1039/C7NR03552G.
  • Mukherjee, S. P., G. Gupta, K. Klöditz, J. Wang, A. F. Rodrigues, K. Kostarelos, and B. Fadeel. 2020. “Next‐Generation Sequencing Reveals Differential Responses to Acute versus Long‐Term Exposures to Graphene Oxide in Human Lung Cells.” Small 16 (21): 1907686. doi:10.1002/smll.201907686.
  • OECD. 2018. "Evaluation of In Vitro Methods for Human Hazard Assessment Applied in the OECD Testing Programme for the Safety of Manufactured Nanomaterials. ENV/JM/MONO(2018)4.” Series on the Safety of Manufactured Nanomaterials No. 85. Unclassified, 23 March 2018.
  • Ohnemus, U., K. Kohrmeyer, P. Houdek, H. Rohde, E. Wladykowski, S. Vidal, M. A. Horstkotte, et al. 2008. “Regulation of Epidermal Tight-Junctions (TJ) during Infection with Exfoliative Toxin-Negative Staphylococcus Strains.” The Journal of Investigative Dermatology 128 (4): 906–916.
  • Olive, P. L., and J. P. Banath. 2006. “The Comet Assay: A Method to Measure DNA Damage in Individual Cells.” Nature Protocols 1 (1): 23–29. doi:10.1038/nprot.2006.5.
  • Ou, L., X. Lv, Z. Wu, W. Xia, Y. Huang, L. Chen, W. Sun, Y. Qi, M. Yang, and L. Qi. 2021. “Oxygen Content-Related DNA Damage of Graphene Oxide on Human Retinal Pigment Epithelium Cells.” Journal of Materials Science: Materials in Medicine 32 (2).
  • Paton, K. R., E. Varrla, C. Backes, R. J. Smith, U. Khan, A. O’Neill, C. Boland, et al. 2014. “Scalable Production of Large Quantities of Defect-Free Few-Layer Graphene by Shear Exfoliation in Liquids.” Nature Materials 13 (6): 624–630. doi:10.1038/nmat3944.
  • Pelin, M., L. Fusco, C. Martín, S. Sosa, J. Frontiñán-Rubio, J. M. González-Domínguez, M. Durán-Prado, E. Vázquez, M. Prato, and A. Tubaro. 2018. “Graphene and Graphene Oxide Induce ROS Production in Human HaCaT Skin Keratinocytes: The Role of Xanthine Oxidase and NADH Dehydrogenase.” Nanoscale 10 (25): 11820–11830. doi:10.1039/C8NR02933D.
  • Pelin, M., L. Fusco, V. Leon, C. Martin, A. Criado, S. Sosa, E. Vazquez, A. Tubaro, and M. Prato. 2017. “Differential Cytotoxic Effects of Graphene and Graphene Oxide on Skin Keratinocytes.” Scientific Reports 7 (1): 40572. doi:10.1038/srep40572.
  • Pelin, M., S. Sosa, M. Prato, and A. Tubaro. 2018. “Occupational Exposure to Graphene Based Nanomaterials: Risk Assessment.” Nanoscale 10 (34): 15894–15903. doi:10.1039/C8NR04950E.
  • Pi, J., Y. He, C. Bortner, J. Huang, J. Liu, T. Zhou, W. Qu, et al. 2005. “Low Level, Long-Term Inorganic Arsenite Exposure Causes Generalized Resistance to Apoptosis in Cultured Human Keratinocytes: Potential Role in Skin Co-Carcinogenesis.” International Journal of Cancer 116 (1): 20–26. doi:10.1002/ijc.20990.
  • Podhorecka, M., A. Skladanowski, and P. Bozko. 2010. “H2AX Phosphorylation: Its Role in DNA Damage Response and Cancer Therapy.” Journal of Nucleic Acids 2010: 1–9. doi:10.4061/2010/920161.
  • Rahman, L., N. R. Jacobsen, S. A. Aziz, D. Wu, A. Williams, C. L. Yauk, P. White, H. Wallin, U. Vogel, and S. Halappanavar. 2017. “Multiwalled Carbon Nanotube-Induced Genotoxic, Inflammatory and Pro-Fibrotic Responses in Mice: Investigating the Mechanisms of Pulmonary Carcinogenesis.” Mutation Research. Genetic Toxicology and Environmental Mutagenesis 823: 28–44.
  • Reifarth, M., S. Hoeppener, and U. S. Schubert. 2018. “Uptake and Intracellular Fate of Engineered Nanoparticles in Mammalian Cells: Capabilities and Limitations of Transmission Electron Microscopy-Polymer-Based Nanoparticles.” Advanced Materials 30 (9): 1703704. doi:10.1002/adma.201703704.
  • Sargent, L. M., A. A. Shvedova, A. F. Hubbs, J. L. Salisbury, S. A. Benkovic, M. L. Kashon, D. T. Lowry, et al. 2009. “Induction of Aneuploidy by Single-Walled Carbon Nanotubes.” Environmental and Molecular Mutagenesis 50 (8): 708–717.
  • Sargent, L. M., A. F. Hubbs, S. H. Young, M. L. Kashon, C. Z. Dinu, J. L. Salisbury, S. A. Benkovic, et al. 2012. “Single-Walled Carbon Nanotube-Induced Mitotic Disruption.” Mutation Research/Genetic Toxicology and Environmental Mutagenesis 745 (1–2): 28–37. doi:10.1016/j.mrgentox.2011.11.017.
  • Sasidharan, A., S. Swaroop, P. Chandran, S. Nair, and M. Koyakutty. 2016. “Cellular and Molecular Mechanistic Insight into the DNA-Damaging Potential of Few-Layer Graphene in Human Primary Endothelial Cells.” Nanomedicine: Nanotechnology, Biology and Medicine 12 (5): 1347–1355. doi:10.1016/j.nano.2016.01.014.
  • Schmid, T. E., O. Zlobinskaya, and G. Multhoff. 2012. “Differences in Phosphorylated Histone H2AX Foci Formation and Removal of Cells Exposed to Low and High Linear Energy Transfer Radiation.” Current Genomics 13 (6): 418–425.
  • Shi, H., L. G. Hudson, W. Ding, S. Wang, K. L. Cooper, S. Liu, Y. Chen, X. Shi, and K. J. Liu. 2004a. “Arsenite Causes DNA Damage in Keratinocytes via Generation of Hydroxyl Radicals.” Chemical Research in Toxicology 17 (7): 871–878.
  • Shi, H., L. G. Hudson, W. Ding, S. Wang, K. L. Cooper, S. Liu, Y. Chen, X. Shi, and K. J. Liu. 2004b. “Arsenite Causes DNA Damage in Keratinocytes via Generation of Hydroxyl Radicals.” Chemical Research in Toxicology 17 (7): 871–878. doi:10.1021/tx049939e.
  • Shieh, S.-Y., M. Ikeda, Y. Taya, and C. Prives. 1997. “DNA Damage-Induced Phosphorylation of p53 Alleviates Inhibition by MDM2.” Cell 91 (3): 325–334. doi:10.1016/S0092-8674(00)80416-X.
  • Siegrist, K. J., S. H. Reynolds, M. L. Kashon, D. T. Lowry, C. Dong, A. F. Hubbs, S. H. Young, et al. 2014. “Genotoxicity of Multiwalled Carbon Nanotubes at Occupationally Relevant Doses.” Particle and Fibre Toxicology 11 (1): 6. doi:10.1186/1743-8977-11-6.
  • Smith, H. L., H. Southgate, D. A. Tweddle, and N. J. Curtin. 2020. “DNA Damage Checkpoint Kinases in Cancer.” Expert Reviews in Molecular Medicine 22: e2, 1–15. doi:10.1017/erm.2020.3.
  • Some, S., Y. Kim, Y. Yoon, H. Yoo, S. Lee, Y. Park, and H. Lee. 2013. “High-Quality Reduced Graphene Oxide by a Dual-Function Chemical Reduction and Healing Process.” Scientific Reports 3 (1): 1929. doi:10.1038/srep01929.
  • Sulli, G., R. Di Micco, and F. d A. di Fagagna. 2012. “Crosstalk between Chromatin State and DNA Damage Response in Cellular Senescence and Cancer.” Nature Reviews Cancer 12 (10): 709–720. doi:10.1038/nrc3344.
  • Torrisi, F., T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G.-W. Hsieh, et al. 2012. “Inkjet-Printed Graphene Electronics.” ACS Nano. 6 (4): 2992–3006. doi:10.1021/nn2044609.
  • Turgeon, M. O., N. J. S. Perry, and G. Poulogiannis. 2018. “DNA Damage, Repair, and Cancer Metabolism.” Frontiers in Oncology 8: 15.
  • Ursini, C. L., D. Cavallo, A. M. Fresegna, A. Ciervo, R. Maiello, G. Buresti, S. Casciardi, F. Tombolini, S. Bellucci, and S. Iavicoli. 2012. “Comparative Cyto-Genotoxicity Assessment of Functionalized and Pristine Multiwalled Carbon Nanotubes on Human Lung Epithelial Cells.” Toxicology in Vitro 26 (6): 831–840.
  • Vales, G., L. Rubio, and R. Marcos. 2016. “Genotoxic and Cell-Transformation Effects of Multiwalled Carbon Nanotubes (MWCNT) following in Vitro Sub-Chronic Exposures.” Journal of Hazardous Materials 306: 193–202. doi:10.1016/j.jhazmat.2015.12.021.
  • Wan, R., Y. Mo, R. Tong, M. Gao, and Q. Zhang. 2019. “Determination of Phosphorylated Histone H2AX in Nanoparticle-Induced Genotoxic Studies.” Nanotoxicity 145–159.
  • Wang, L., S. Luanpitpong, V. Castranova, W. Tse, Y. Lu, V. Pongrakhananon, and Y. Rojanasakul. 2011. “Carbon Nanotubes Induce Malignant Transformation and Tumorigenesis of Human Lung Epithelial Cells.” Nano Letters 11 (7): 2796–2803. doi:10.1021/nl2011214.
  • Wang, Y., J. Xu, L. Xu, X. Tan, L. Feng, Y. Luo, J. Liu, Z. Liu, and R. Peng. 2018. “Functionalized Graphene Oxide Triggers Cell Cycle Checkpoint Control through Both the ATM and the ATR Signaling Pathways.” Carbon 129: 495–503. doi:10.1016/j.carbon.2017.12.012.
  • Watcharotone, S., D. A. Dikin, S. Stankovich, R. Piner, I. Jung, G. H. B. Dommett, G. Evmenenko, et al. 2007. “Graphene − Silica Composite Thin Films as Transparent Conductors.” Nano Letters 7 (7): 1888–1892.
  • Weinmuellner, R., K. Kryeziu, B. Zbiral, K. Tav, B. Schoenhacker-Alte, D. Groza, L. Wimmer, et al. 2018. “Long-Term Exposure of Immortalized Keratinocytes to Arsenic Induces EMT, Impairs Differentiation in Organotypic Skin Models and Mimics Aspects of Human Skin Derangements.” Archives of Toxicology 92 (1): 181–194. doi:10.1007/s00204-017-2034-6.
  • Xiaoli, F., C. Qiyue, G. Weihong, Z. Yaqing, H. Chen, W. Junrong, and S. Longquan. 2020. “Toxicology Data of Graphene-Family Nanomaterials: An Update.” Archives of Toxicology 94 (6): 1915–1939. doi:10.1007/s00204-020-02717-2.
  • Xu, L., J. Zhao, and Z. Wang. 2019. “Genotoxic Response and Damage Recovery of Macrophages to Graphene Quantum Dots.” The Science of the Total Environment 664: 536–545.
  • You, R., Y. Q. Liu, Y. L. Hao, D. D. Han, Y. L. Zhang, and Z. You. 2020. “Laser Fabrication of Graphene-Based Flexible Electronics.” Advanced Materials 32 (15): e1901981.
  • Yu, D. S., T. Kuila, N. H. Kim, P. Khanra, and J. H. Lee. 2013. “Effects of Covalent Surface Modifications on the Electrical and Electrochemical Properties of Graphene Using Sodium 4-Aminoazobenzene-4′-Sulfonate.” Carbon 54: 310–322. doi:10.1016/j.carbon.2012.11.043.
  • Zhou, T., H. Ni, Y. Wang, C. Wu, H. Zhang, J. Zhang, A. P. Tomsia, L. Jiang, and Q. Cheng. 2020. “Ultratough Graphene-Black Phosphorus Films.” Proceedings of the National Academy of Sciences 117 (16): 8727–8735. doi:10.1073/pnas.1916610117.
  • Zong, P-a., J. Liang, P. Zhang, C. Wan, Y. Wang, and K. Koumoto. 2020. “Graphene-Based Thermoelectrics.” ACS Applied Energy Materials 3 (3): 2224–2239. doi:10.1021/acsaem.9b02187.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.