244
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Efficient predictions of cytotoxicity of TiO2-based multi-component nanoparticles using a machine learning-based q-RASAR approach

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 78-93 | Received 15 Dec 2022, Accepted 26 Feb 2023, Published online: 08 Mar 2023

References

  • Banerjee, A., and K. Roy, On Some Novel Similarity-Based Functions Used in the ML-Based q‑RASAR Approach for Efficient Quantitative Predictions of Selected Toxicity End Points2023. Chemical Research in Toxicology https://doi.org/10.1021/acs.chemrestox.2c00374.
  • Acharya, S., and S. K. Sahoo. 2011. “PLGA Nanoparticles Containing Various Anticancer Agents and Tumour Delivery by EPR Effect.” Advanced Drug Delivery Reviews 63 (3): 170–183. doi:10.1016/j.addr.2010.10.008.
  • Banerjee, A., M. Chatterjee, P. De, and K. Roy. 2022. “Quantitative Predictions from Chemical Read-Across and Their Confidence Measures.” Chemometrics and Intelligent Laboratory Systems 227: 104613. doi:10.1016/j.chemolab.2022.104613.
  • Banerjee, A., P. De, V. Kumar, S. Kar, and K. Roy. 2022. “Quick and Efficient Quantitative Predictions of Androgen Receptor Binding Affinity for Screening Endocrine Disruptor Chemicals Using 2D-QSAR and Chemical Read-Across.” Chemosphere 309 (Pt 1): 136579. doi:10.1016/j.chemosphere.2022.136579.
  • Banerjee, A., and K. Roy. 2022. “First Report of Q-RASAR Modeling Toward an Approach of Easy Interpretability and Efficient Transferability.” Molecular Diversity 26 (5): 2847–2862. doi:10.1007/s11030-022-10478-6.
  • Breiman, L. 2001. “Random Forests.” Machine Learning 45 (1): 5–32. doi:10.1023/A:1010933404324.
  • Chatterjee, M., A. Banerjee, P. De, A. Gajewicz, and K. Roy. 2022. “A Novel Quantitative Read-Across Tool Designed Purposefully to Fill the Existing Gaps in Nanosafety Data.” Environmental Science: Nano 9: 189–203. doi:10.1039/D1EN00725D.
  • Chavali, M. S., and M. P. Nikolova. 2019. “Metal Oxide Nanoparticles and Their Applications in Nanotechnology.” SN Applied Sciences 1 (6): 607. doi:10.1007/s42452-019-0592-3.
  • De, P., S. Kar, K. Roy, and J. Leszczynski. 2018. “Second Generation Periodic Table-Based Descriptors to Encode Toxicity of Metal Oxide Nanoparticles to Multiple Species: QSTR Modeling for Exploration of Toxicity Mechanisms.” Environmental Science: Nano 5: 2742–2760. doi:10.1039/C8EN00809D.
  • Gajewicz, A., B. Rasulev, T. C. Dinadayalane, P. Urbaszek, T. Puzyn, D. Leszczynska, and J. Leszczynski. 2012. “Advancing Risk Assessment of Engineered Nanomaterials: Application of Computational Approaches.” Advanced Drug Delivery Reviews 64 (15): 1663–1693. doi:10.1016/j.addr.2012.05.014.
  • García-Fernández, A. J. 2020. “Ecotoxicological Risk Assessment in the Context of Different EU Regulations.” In Ecotoxicological QSARs. Methods in Pharmacology and Toxicology, edited by K. Roy. New York: Humana. doi:10.1007/978-1-0716-0150-1_1.
  • Golbraikh, A., and A. Tropsha. 2002. “Beware of q2!” Journal of Molecular Graphics & Modelling 20 (4): 269–276. doi:10.1016/S1093-3263(01)00123-1.
  • Gramatica, P. 2013. “On the Development and Validation of QSAR Models.” In Computational Toxicology. Methods in Molecular Biology, edited by B. Reisfeld and A. Mayeno, Vol. 930. Totowa, NJ: Humana Press. doi:10.1007/978-1-62703-059-5_21.
  • Kar, S., A. Gajewicz, T. Puzyn, K. Roy, and J. Leszczynski. 2014. “Periodic Table-Based Descriptors to Encode Cytotoxicity Profile of Metal Oxide Nanoparticles: A Mechanistic QSTR Approach.” Ecotoxicology and Environmental Safety 107: 162–169. doi:10.1016/j.ecoenv.2014.05.026.
  • Karlsson, H. L., M. S. Toprak, and B. Fadeel. 2022. “Toxicity of Metal and Metal Oxide Nanoparticles.” In Handbook on the Toxicology of Metals. 5th ed., edited by G. F. Nordberg and M. Costa. New York, NY: Academic Press. doi:10.1016/B978-0-12-823292-7.00002-4.
  • Kirklin, S., J. E. Saal, B. Meredig, A. Thompson, J. W. Doak, M. Aykol, S. Rühl, and C. Wolverton. 2015. “The Open Quantum Materials Database (OQMD): Assessing the Accuracy of DFT Formation Energies.” NPJ Computational Materials 1 (1): 15010. doi:10.1038/npjcompumats.2015.10.
  • Kluyver, T., B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier, J. Frederic, K. Kelley, et al. 2016. “Jupyter Notebooks - A Publishing Format for Reproducible Computational Workflows.” In Positioning and Power in Academic Publishing: Players, Agents and Agendas, edited by F. Loizides and B. Schmidt, 87–90. Amsterdam: IOS Press. doi:10.3233/978-1-61499-649-1-87.
  • Kovarich, S., L. Ceriani, M. F. Gatnik, A. Bassan, and M. Pavan. 2019. “Filling Data Gaps by Read-Across: A Mini Review on Its Application, Developments and Challenges.” Molecular Informatics 38 (8–9): e1800121. doi:10.1002/minf.201800121.
  • Luechtefeld, T., D. Marsh, C. Rowlands, and T. Hartung. 2018. “Machine Learning of Toxicological Big Data Enables Read-Across Structure Activity Relationships (RASAR) Outperforming Animal Test Reproducibility.” Toxicological Sciences : An Official Journal of the Society of Toxicology 165 (1): 198–212. doi:10.1093/toxsci/kfy152.
  • Manuja, A., B. Kumar, R. Kumar, D. Chhabra, M. Ghosh, M. Manuja, B. Brar, Y. Pal, B. N. Tripathi, and M. Prasad. 2021. “Metal/Metal Oxide Nanoparticles: Toxicity Concerns Associated with Their Physical State and Remediation for Biomedical Applications.” Toxicology Reports 8: 1970–1978. doi:10.1016/j.toxrep.2021.11.020.
  • Mikolajczyk, A., A. Gajewicz, E. Mulkiewicz, B. Rasulev, M. Marchelek, M. Diak, S. Hirano, A. Zaleska-Medynska, and T. Puzyn. 2018. “Nano-QSAR Modeling for Ecosafe Design of Heterogeneous TiO2-Based Nano-photocatalysts.” Environmental Science: Nano Journal 5: 1150–1160. doi:10.1039/c8en00085a.
  • Mikolajczyk, A., N. Sizochenko, E. Mulkiewicz, A. Malankowska, B. Rasulev, and T. Puzyn. 2019. “A Chemoinformatics Approach for the Characterization of Hybrid Nanomaterials: Safer and Efficient Design Perspective.” Nanoscale 11 (24): 11808–11818. doi:10.1039/C9NR01162E.
  • Puzyn, T., B. Rasulev, A. Gajewicz, X. Hu, T. P. Dasari, A. Michalkova, H. M. Hwang, A. Toropov, D. Leszczynska, and J. Leszczynski. 2011. “Using Nano-QSAR to Predict the Cytotoxicity of Metal Oxide Nanoparticles.” Nature Nanotechnology 6 (3): 175–178. doi:10.1038/nnano.2011.10.
  • Roy, K., R. N. Das, P. Ambure, and R. B. Aher. 2016. “Be Aware of Error Measures. Further Studies on Validation of Predictive QSAR Models.” Chemometrics and Intelligent Laboratory Systems 152: 18–33. doi:10.1016/j.chemolab.2016.01.008.
  • Roy, K., S. Kar, and R. N. Das. 2015. Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment. New York: Elsevier Inc. doi:10.1016/C2014-0-00286-9.
  • Roy, J., and K. Roy. 2022a. “Risk Assessment and Data Gap Filling of Toxicity of Metal Oxide Nanoparticles (Meox Nps) Used in Nanomedicines: A Mechanistic QSAR Approach.” Environmental Science: Nano 9: 3456–3470. doi:10.1039/D2EN00303A.
  • Roy, J., and K. Roy. 2022b. “Modeling and Mechanistic Understanding of Cytotoxicity of Metal Oxide Nanoparticles (Meoxnps) to Escherichia coli: Categorization and Data Gap Filling for Untested Metal Oxides.” Nanotoxicology 16 (2): 152–164. doi:10.1080/17435390.2022.2038299.
  • Roy, J., and K. Roy. 2022c. “Nano-Read-Across Predictions of Toxicity of Metal Oxide Engineered Nanoparticles (MeOx ENPS) Used in Nanopesticides to BEAS-2B and RAW 264.7 Cells.” Nanotoxicology. 16 (5): 629–644. doi:10.1080/17435390.2022.2132887.
  • Roy, J., and K. Roy. 2021. “Assessment of Toxicity of Metal Oxide and Hydroxide Nanoparticles Using the QSAR Modeling Approach.” Environmental Science: Nano 8: 3395–3407. doi:10.1039/D1EN00733E.
  • Saal, J. E., S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton. 2013. “Materials Design and Discovery with High-Throughput Density Functional Theory.” The Open Quantum Materials Database (OQMD): JOM. 65: 1501–1509. doi:10.1007/s11837-013-0755-4.
  • Sengul, A. B., and E. Asmatulu. 2020. “Toxicity of Metal and Metal Oxide Nanoparticles: A Review.” Environmental Chemistry Letters 18 (5): 1659–1683. doi:10.1007/s10311-020-01033-6.
  • Varnek, A., and I. Baskin. 2012. “Machine Learning Methods for Property Prediction in Chemoinformatics: Quo Vadis?” Journal of Chemical Information and Modeling 52 (6): 1413–1437. doi:10.1021/ci200409x.
  • Zhang, S., A. Golbraikh, S. Oloff, H. Kohn, and A. Tropsha. 2006. “A Novel Automated Lazy Learning QSAR (ALL-QSAR) Approach: Method Development, Applications and Virtual Screening of Chemical Databases Using Validated ALL-QSAR Models.” Journal of Chemical Information and Modeling 46 (5): 1984–1995. doi:10.1021/ci060132x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.