570
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Chronic toxicity of core–shell SiC/TiO2 (nano)-particles to Daphnia magna under environmentally relevant food rations in the presence of humic acid

, , &
Pages 107-118 | Received 20 Sep 2023, Accepted 16 Feb 2024, Published online: 29 Feb 2024

References

  • Bacchetta, R., N. Santo, I. Valenti, D. Maggioni, M. Longhi, and P. Tremolada. 2018. “Comparative Toxicity of Three Differently Shaped Carbon Nanomaterials on Daphnia magna: Does a Shape Effect Exist?” Nanotoxicology 12 (3): 201–223. https://doi.org/10.1080/17435390.2018.1430258
  • Bessa, M. J., C. Costa, J. Reinosa, C. Pereira, S. Fraga, J. Fernández, M. A. Bañares, and J. P. Teixeira. 2017. “Moving into Advanced Nanomaterials. Toxicity of Rutile TiO2 Nanoparticles Immobilized in Nanokaolin Nanocomposites on HepG2 Cell Line.” Toxicology and Applied Pharmacology 316: 114–122. https://doi.org/10.1016/j.taap.2016.12.018
  • Camboni, M., P. Floyd, J. Hanlon, and P. G. Rodrigo. 2019. “A State of Play Study of the Market for so Called “Next Generation” Nanomaterials.” European Chemicals Agency https://doi.org/10.2823/242422.
  • Campos, B., C. Rivetti, P. Rosenkranz, J. M. Navas, and C. Barata. 2013. “Effects of Nanoparticles of TiO2 on Food Depletion and Life-History Responses of Daphnia magna.” Aquatic Toxicology (Amsterdam, Netherlands) 130-131: 174–183. https://doi.org/10.1016/j.aquatox.2013.01.005
  • Cui, R., Y. Chae, and Y. J. An. 2017. “Dimension-Dependent Toxicity of Silver Nanomaterials on the Cladocerans Daphnia magna and Daphnia galeata.” Chemosphere 185: 205–212. https://doi.org/10.1016/j.chemosphere.2017.07.011
  • Cupi, D., N. B. Hartmann, and A. Baun. 2015. “The Influence of Natural Organic Matter and Aging on Suspension Stability in Guideline Toxicity Testing of Silver, Zinc Oxide, and Titanium Dioxide Nanoparticles with Daphnia Magna.” Environmental Toxicology and Chemistry 34 (3): 497–506. https://doi.org/10.1002/etc.2855. 25546145
  • Dhiman, S., A. Yadav, N. Debnath, and S. Das. 2021. “Application of Core/Shell Nanoparticles in Smart Farming: A Paradigm Shift for Making the Agriculture Sector More Sustainable.” Journal of Agricultural and Food Chemistry 69 (11): 3267–3283. https://doi.org/10.1021/acs.jafc.0c05403
  • Ekvall, M. T., J. Hedberg, I. Odnevall Wallinder, A. Malmendal, L. A. Hansson, and T. Cedervall. 2021. “Adsorption of Bio-Organic Eco-Corona Molecules Reduces the Toxic Response to Metallic Nanoparticles in Daphnia magna.” Scientific Reports 11 (1): 10784. https://doi.org/10.1038/s41598-021-90053-5
  • Elendt, B.-P. 1990. “Selenium Deficiency in Crustacea.” Protoplasma 154 (1): 25–33. https://doi.org/10.1007/BF01349532
  • Farner, J. M., R. S. Cheong, E. Mahé, H. Anand, and N. Tufenkji. 2019. “Comparing TiO2 Nanoparticle Formulations: Stability and Photoreactivity Are Key Factors in Acute Toxicity to Daphnia magna.” Environmental Science: Nano 6 (8): 2532–2543. https://doi.org/10.1039/C9EN00666D
  • Ghosh Chaudhuri, R., and S. Paria. 2012. “Core/Shell Nanoparticles: classes, Properties, Synthesis Mechanisms, Characterization, and Applications.” Chemical Reviews 112 (4): 2373–2433. https://doi.org/10.1021/cr100449n
  • González-Andrés, V., M. Diez-Ortiz, C. Delpivo, G. Janer, A. Fritzsche, and S. Vázquez-Campos. 2017. “Acute Ecotoxicity of Coated Colloidal Goethite Nanoparticles on Daphnia Magna: Evaluating the Influence of Exposure Approaches.” The Science of the Total Environment 609: 172–179. https://doi.org/10.1016/j.scitotenv.2017.07.047. 28738199
  • Gophen, M., and W. Geller. 1984. “Filter Mesh Size and Food Particle Uptake by Daphnia.” Oecologia 64 (3): 408–412. https://doi.org/10.1007/bf00379140
  • Guo, M., K. Huang, and W. Xu. 2021. “Third Generation Whole-Cell Sensing Systems: synthetic Biology Inside, Nanomaterial outside.” Trends in Biotechnology 39 (6): 550–559. https://doi.org/10.1016/j.tibtech.2020.10.002
  • Hansen, S. F., O. F. H. Hansen, and M. B. Nielsen. 2020. “Advances and Challenges Towards Consumerization of Nanomaterials.” Nature Nanotechnology 15 (12): 964–965. https://doi.org/10.1038/s41565-020-00819-7
  • Heugens, E. H., L. T. Tokkie, M. H. Kraak, A. J. Hendriks, N. M Van Straalen, and W. Admiraal. 2006. “Population Growth of Daphnia Magna under Multiple Stress Conditions: joint Effects of Temperature, Food, and Cadmium.” Environmental Toxicology and Chemistry 25 (5): 1399–1407. https://doi.org/10.1897/05-294r.1
  • Ieromina, O., W. J. Peijnenburg, G. de Snoo, J. Müller, T. P. Knepper, and M. G. Vijver. 2014. “Impact of Imidacloprid on Daphnia magna Under Different Food Quality Regimes.” Environmental Toxicology and Chemistry 33 (3): 621–631. https://doi.org/10.1002/etc.2472
  • Kumar, R., A. S. Kushwaha, and S. K. Srivastava. 2015. “One-Dimensional Nano Layered SiC/TiO2 Based Photonic Band Gap Materials as Temperature Sensor.” Optik 126 (14): 1324–1330. https://doi.org/10.1016/j.ijleo.2015.04.012
  • Kumar, R., K. Mondal, P. K. Panda, A. Kaushik, R. Abolhassani, R. Ahuja, H. G. Rubahn, and Y. K. Mishra. 2020. “Core–Shell Nanostructures: Perspectives Towards Drug Delivery Applications.” Journal of Materials Chemistry. B 8 (39): 8992–9027. https://doi.org/10.1039/D0TB01559H
  • Li, Y., C. Yang, X. Guo, Z. Dang, X. Li, and Q. Zhang. 2015. “Effects of Humic Acids on the Aggregation and Sorption of Nano-TiO2.” Chemosphere 119: 171–176. https://doi.org/10.1016/j.chemosphere.2014.05.002
  • Lin, D., J. Ji, Z. Long, K. Yang, and F. Wu. 2012. “The Influence of Dissolved and Surface-Bound Humic Acid on the Toxicity of TiO2 Nanoparticles to Chlorella Sp.” Water Research 46 (14): 4477–4487. https://doi.org/10.1016/j.watres.2012.05.035
  • Liu, H., Y. Liu, and J. Li. 2014. “Preparation of SiC/TiO2 Ceramic Microspheres.” Advances in Applied Ceramics. 113 (7): 438–443. https://doi.org/10.1179/1743676114Y.0000000182
  • Lu, Y., H. Zhang, H. Wang, N. Ma, T. Sun, and B. Cui. 2021. “Humic Acid Mediated Toxicity of Faceted TiO2 Nanocrystals to Daphnia magna.” Journal of Hazardous Materials 416: 126112. https://doi.org/10.1016/j.jhazmat.2021.126112
  • Mazari, S. A., E. Ali, R. Abro, F. S. A. Khan, I. Ahmed, M. Ahmed, S. Nizamuddin, et al. 2021. “Nanomaterials: Applications, Waste-Handling, Environmental Toxicities, and Future Challenges–A Review.” Journal of Environmental Chemical Engineering. 9 (2): 105028. https://doi.org/10.1016/j.jece.2021.105028
  • Nasser, F., and I. Lynch. 2016. “Secreted Protein Eco-Corona Mediates Uptake and Impacts of Polystyrene Nanoparticles on Daphnia magna.” Journal of Proteomics 137: 45–51. https://doi.org/10.1016/j.jprot.2015.09.005
  • Nasser, F., J. Constantinou, and I. Lynch. 2020. “Nanomaterials in the Environment Acquire an “Eco‐Corona” Impacting Their Toxicity to Daphnia magna—a Call for Updating Toxicity Testing Policies.” Proteomics 20 (9): e1800412. https://doi.org/10.1002/pmic.201800412
  • OECD. 2012. Test No. 211: Daphnia Magna Reproduction Test, OECD Guidelines for the Testing of Chemicals, Section 2. OECD Publishing, Paris. https://doi.org/10.1787/9789264185203-en
  • OECD 2022. Guidance Document No. 317, Guidance Document on Aquatic and Sediment Toxicological Testing of Nanomaterials, Series on Testing and Assessment. OECD Publishing, Paris.
  • OECD 2017. Test No. 318: Dispersion Stability of Nanomaterials in Simulated Environmental Media, OECD Guidelines for the Testing of Chemicals, Section 3. OECD Publishing, Paris https://doi.org/10.1787/9789264284142-en
  • OECD 2004. Test No. 202: Daphnia Sp. Acute Immobilisation Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris, https://doi.org/10.1787/9789264069947-en
  • Pizzol, L., A. Livieri, B. Salieri, L. Farcal, L. G. Soeteman-Hernández, H. Rauscher, A. Zabeo, et al. 2023. “Screening Level Approach to Support Companies in Making Safe and Sustainable by Design Decisions at the Early Stages of Innovation.” Cleaner Environmental Systems 10: 100132. https://doi.org/10.1016/j.cesys.2023.100132
  • Rather, G. A., M. Z. Gul, M. Riyaz, A. Chakravorty, M. H. Khan, A. Nanda, and M. Y. Bhat. 2021. “Toxicity and Risk Assessment of Nanomaterials.” In Handbook of Research on Nano-Strategies for Combatting Antimicrobial Resistance and Cancer (pp. 391–416). Pennsylvania: IGI Global. https://doi.org/10.4018/978-1-7998-5049-6
  • Ritz, C., F. Baty, J. C. Streibig, and D. Gerhard. 2015. “Dose-Response Analysis Using R.” PloS One 10 (12): e0146021. https://doi.org/10.1371/journal.pone.0146021. PMC: 26717316
  • Romanello, M. B., and M. M. F. de Cortalezzi. 2013. “An Experimental Study on the Aggregation of TiO2 Nanoparticles under Environmentally Relevant Conditions.” Water Research 47 (12): 3887–3898. https://doi.org/10.1016/j.watres.2012.11.061
  • Sabogal-Suárez, D., J. D. Alzate-Cardona, and E. Restrepo-Parra. 2019. “Influence of the Shape on Exchange Bias in Core/Shell Nanoparticles.” Journal of Magnetism and Magnetic Materials. 482: 120–124. https://doi.org/10.1016/j.jmmm.2019.03.037
  • Stevenson, L. M., K. E. Krattenmaker, E. Johnson, A. J. Bowers, A. S. Adeleye, E. McCauley, and R. M. Nisbet. 2017. “Standardized Toxicity Testing May Underestimate Ecotoxicity: Environmentally Relevant Food Rations Increase the Toxicity of Silver Nanoparticles to Daphnia.” Environmental Toxicology and Chemistry 36 (11): 3008–3018. https://doi.org/10.1002/etc.3869
  • Stevenson, L. M., K. E. Krattenmaker, E. McCauley, and R. M. Nisbet. 2022. “Extrapolating Contaminant Effects from Individuals to Populations: A Case Study on Nanoparticle Toxicity to Daphnia Fed Environmentally Relevant Food levelsArch.” Archives of Environmental Contamination and Toxicology 83 (4): 361–375. https://doi.org/10.1007/s00244-022-00950-7
  • Sun, Y., Q. Liu, J. Huang, D. Li, Y. Huang, K. Lyu, and Z. Yang. 2022. “Food Abundance Mediates the Harmful Effects of ZnO Nanoparticles on Development and Early Reproductive Performance of Daphnia magna.” Ecotoxicology and Environmental Safety 236: 113475. https://doi.org/10.1016/j.ecoenv.2022.113475
  • Tsamos, D., A. Krestou, M. Papagiannaki, and S. Maropoulos. 2022. “An Overview of the Production of Magnetic Core-Shell Nanoparticles and Their Biomedical Applications.” Metals 12 (4): 605. https://doi.org/10.3390/met12040605
  • Wang, Z., L. Zhang, J. Zhao, and B. Xing. 2016. “Environmental Processes and Toxicity of Metallic Nanoparticles in Aquatic Systems as Affected by Natural Organic Matter.” Environmental Science: Nano 3 (2): 240–255. https://doi.org/10.1039/C5EN00230C
  • Wei, B., C. Zou, X. Yuan, and X. Li. 2017. “Thermo-Physical Property Evaluation of Diathermic Oil Based Hybrid Nanofluids for Heat Transfer Applications.” International Journal of Heat and Mass Transfer 107: 281–287. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.044
  • Xie, P., W. Yuan, X. Liu, Y. Peng, Y. Yin, Y. Li, and Z. Wu. 2021. “Advanced Carbon Nanomaterials for State-of-the-Art Flexible Supercapacitors.” Energy Storage Materials 36: 56–76. https://doi.org/10.1016/j.ensm.2020.12.011
  • Yaqoob, A. A., T. Parveen, K. Umar, and M. N. Mohamad Ibrahim. 2020. “Role of Nanomaterials in the Treatment of Wastewater: A Review.” Water 12 (2): 495. https://doi.org/10.3390/w12020495
  • Yu, Q., Z. Wang, G. Wang, W. J. Peijnenburg, and M. G. Vijver. 2022. “Effects of Natural Organic Matter on the Joint Toxicity and Accumulation of Cu Nanoparticles and ZnO Nanoparticles in Daphnia magna.” Environmental Pollution (Barking, Essex: 1987) 292 (Pt B): 118413. https://doi.org/10.1016/j.envpol.2021.118413
  • Zhang, Y. J., P. M. Radjenovic, X. S. Zhou, H. Zhang, J. L. Yao, and J. F. Li. 2021. “Plasmonic Core–Shell Nanomaterials and Their Applications in Spectroscopies.” Advanced Materials (Deerfield Beach, Fla.) 33 (50): e2005900. https://doi.org/10.1002/adma.202005900