118
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Food-grade titanium dioxide (E171) and zinc oxide nanoparticles induce mitochondrial permeability and cardiac damage after oral exposure in rats

, , , , , , & show all
Pages 122-133 | Received 14 Nov 2023, Accepted 20 Feb 2024, Published online: 04 Mar 2024

References

  • Amara, S., W. Khemissi, I. Mrad, N. Rihane, I. Ben Slama, L. E. Mir, M. Jeljeli, K. Ben Rhouma, H. Abdelmelek, and M. Sakly. 2013. “Effect of TiO2 Nanoparticles on Emotional Behavior and Biochemical Parameters in Adult Wistar Rats.” General Physiology and Biophysics 32 (2): 229–234. https://doi.org/10.4149/gpb_2013015
  • Amigo, I., S. L. Menezes-Filho, L. A. Luévano-Martínez, B. Chausse, and A. J. Kowaltowski. 2017. “Caloric Restriction Increases Brain Mitochondrial Calcium Retention Capacity and Protects against Excitotoxicity.” Aging Cell 16 (1): 73–81. https://doi.org/10.1111/acel.12527
  • Baek, M., H. E. Chung, J. Yu, J. A. Lee, T. H. Kim, J. M. Oh, W. J. Lee, et al. 2012. “Pharmacokinetics, Tissue Distribution, and Excretion of Zinc Oxide Nanoparticles.” International Journal of Nanomedicine 7: 3081–3097. https://doi.org/10.2147/IJN.S32593
  • Bertero, E., and C. Maack. 2018. “Calcium Signaling and Reactive Oxygen Species in Mitochondria.” Circulation Research 122 (10): 1460–1478. https://doi.org/10.1161/CIRCRESAHA.118.310082
  • Bettini, S., E. Boutet-Robinet, C. Cartier, C. Coméra, E. Gaultier, J. Dupuy, N. Naud, et al. 2017. “Food-Grade TiO2 Impairs Intestinal and Systemic Immune Homeostasis, Initiates Preneoplastic Lesions and Promotes Aberrant Crypt Development in the Rat Colon.” Scientific Reports 7 (1). https://doi.org/10.1038/srep40373
  • Cao, Y., Y. Gong, W. Liao, Y. Luo, C. Wu, M. Wang, and Q. Yang. 2018. “A Review of Cardiovascular Toxicity of TiO2, ZnO and Ag Nanoparticles (NPs).” Biometals 31 (4): 457–476. https://doi.org/10.1007/s10534-018-0113-7
  • Chen, Z., S. Han, P. Zheng, D. Zhou, S. Zhou, and G. Jia. 2020. “Effect of Oral Exposure to Titanium Dioxide Nanoparticles on Lipid Metabolism in Sprague-Dawley Rats.” Nanoscale 12 (10): 5973–5986. https://doi.org/10.1039/c9nr10947a
  • Cho, W. S., R. Duffin, S. E. M. Howie, C. J. Scotton, W. A. H. Wallace, W. Macnee, M. Bradley, I. L. Megson, and K. Donaldson. 2011. “Progressive Severe Lung Injury by Zinc Oxide Nanoparticles; the Role of Zn2+ Dissolution inside Lysosomes.” Particle and Fibre Toxicology 8 (1): 27. https://doi.org/10.1186/1743-8977-8-27
  • Coméra, C., C. Cartier, E. Gaultier, O. Catrice, Q. Panouille, S. El Hamdi, Z. K. Tire, I. Nelissen, V. Théodorou, and E. Houdeau. 2020. “Jejunal Villus Absorption and Paracellular Tight Junction Permeability Are Major Routes for Early Intestinal Uptake of Food-Grade TiO2 Particles: An in Vivo and Ex Vivo Study in Mice.” Particle and Fibre Toxicology 17 (1): 26. https://doi.org/10.1186/s12989-020-00357-z
  • Correa, F., N. Pavón, M. Buelna-Chontal, N. Chiquete-Félix, L. Hernández-Esquivel, and E. Chávez. 2018. “Calcium Induces Mitochondrial Oxidative Stress Because of Its Binding to Adenine Nucleotide Translocase.” Cell Biochemistry and Biophysics 76 (4): 445–450. https://doi.org/10.1007/s12013-018-0856-3
  • Czyżowska, A., and A. Barbasz. 2020. “A Review: Zinc Oxide Nanoparticles – Friends or Enemies?” International Journal of Environmental Health Research 32 (4): 885–901. https://doi.org/10.1080/09603123.2020.1805415
  • De Cavanagh, E. M., J. E. Toblli, L. Ferder, B. Piotrkowski, I. Stella, C. G. Fraga, and F. Inserra. 2005. “Angiotensin II Blockade Improves Mitochondrial Function in Spontaneously Hypertensive Rats.” Cellular and Molecular Biology (Noisy-le-Grand, France) 51 (6): 573–578.
  • Dikalov, S. L., and Z. Ungvari. 2013. “Role of Mitochondrial Oxidative Stress in Hypertension.” American Journal of Physiology. Heart and Circulatory Physiology 305 (10): H1417–H1427. https://doi.org/10.1152/ajpheart.00089.2013
  • Dorier, M., D. Béal, C. Marie-Desvergne, M. Dubosson, F. Barreau, E. Houdeau, N. Herlin-Boime, and M. Carriere. 2017. “Continuous in Vitro Exposure of Intestinal Epithelial Cells to E171 Food Additive Causes Oxidative Stress, Inducing Oxidation of DNA Bases but No Endoplasmic Reticulum Stress.” Nanotoxicology 11 (6): 751–761. https://doi.org/10.1080/17435390.2017.1349203
  • ECHA (European Chemicals Agency). 2022. Nanomaterials. Accessed November 10, 2022. https://echa.europa.eu/regulations/nanomaterials.
  • EFSA Panel on Food Additives and Flavourings (FAF), Younes, M., G. Aquilina, L. Castle, K. H. Engel, P. Fowler, M. J. Frutos Fernandez, et al. 2021. “Safety Assessment of Titanium Dioxide (E171) as a Food Additive.” EFSA Journal 19 (5): e06585. https://doi.org/10.2903/j.efsa.2021.6585
  • EFSA. 2016. “Re-evaluation of Titanium Dioxide (E 171) as a Food Additive EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS).” EFSA Journal 14: 4545. https://doi.org/10.2903/j.efsa.2016.4545
  • Fan, P., C. Yang, L. Wang, Q. Wang, Y. Zhang, J. Zhou, J. Weng, and B. Feng. 2021. “ZnO Nanoparticles Stimulate Oxidative Stress to Induce Apoptosis of B16F10 Melanoma Cells: In Vitro and in Vivo Studies.” Biomedical Physics & Engineering Express 7 (6): 065014. https://doi.org/10.1088/2057-1976/ac251f
  • Flores Chávez, P. L., L. E. Santos Martínez, R. Martínez Memije, T. Salvador Cortes, G. Sánchez Torres, and O. Infante Vázquez. 2007. “Confiabilidad de la presión arterial sistémica determinada por un método no invasivo en ratas normo-tensas.” Revista del Instituto Nacional de Enfermedades Respiratorias 20 (4): 247–254.
  • Flores Chávez, P. L., O. Infante Vázquez, G. Sánchez Torres, R. Martínez Memije, and G. Rodríguez Rossini. 2022. “Detección de signos vitales en ratas mediante métodos no invasivos.” Veterinaria México 33 (2): 179–187.
  • Freyre-Fonseca, V., N. L. Delgado-Buenrostro, E. B. Gutiérrez-Cirlos, C. M. Calderón-Torres, T. Cabellos-Avelar, Y. Sánchez-Pérez, E. Pinzón, et al. 2011. “Titanium Dioxide Nanoparticles Impair Lung Mitochondrial Function.” Toxicology Letters 202 (2): 111–119. https://doi.org/10.1016/j.toxlet.2011.01.025
  • Geraets, L., A. G. Oomen, P. Krystek, N. R. Jacobsen, H. Wallin, M. Laurentie, H. W. Verharen, E. F. Brandon, and W. H. de Jong. 2014. “Tissue Distribution and Elimination after Oral and Intravenous Administration of Different Titanium Dioxide Nanoparticles in Rats.” Particle and Fibre Toxicology 11 (1): 30. https://doi.org/10.1186/1743-8977-11-30
  • Gong, Y., Y. Ji, F. Liu, J. Li, and Y. Cao. 2017. “Cytotoxicity, Oxidative Stress and Inflammation Induced by ZnO Nanoparticles in Endothelial Cells: Interaction with Palmitate or Lipopolysaccharide.” Journal of Applied Toxicology: JAT 37 (8): 895–901. https://doi.org/10.1002/jat.3415
  • González-Mingot, C., F. J. Miana-Mena, P. J. Iñarrea, C. Iñiguez, J. L. Capablo, R. Osta, A. Gil-Sánchez, L. Brieva, and P. Larrodé. 2023. “Mitochondrial Aconitase Enzymatic Activity: A Potential Long-Term Survival Biomarker in the Blood of ALS Patients.” Journal of Clinical Medicine 12 (10): 3560. https://doi.org/10.3390/jcm12103560
  • Han, H. Y., M. J. Yang, C. Yoon, G. H. Lee, D. W. Kim, T. W. Kim, M. Kwak, et al. 2021. “Toxicity of Orally Administered Food-Grade Titanium Dioxide Nanoparticles.” Journal of Applied Toxicology 41 (7): 1127–1147. https://doi.org/10.1002/jat.4099
  • Hausladen, A., and I. Fridovich. 1994. “Superoxide and Peroxynitrite Inactivate Aconitases, but Nitric Oxide Does Not.” Journal of Biological Chemistry 269 (47): 29405–29408. https://doi.org/10.1016/S0021-9258(18)43893-8
  • Hernández-Esquivel, L., N. Pavón, M. Buelna-Chontal, H. González-Pacheco, J. Belmont, and E. Chávez. 2015. “Cardioprotective Properties of Citicoline against Hyperthyroidism-Induced Reperfusion Damage in Rat Hearts.” Biochemistry and Cell Biology = Biochimie et Biologie Cellulaire 93 (3): 185–191. https://doi.org/10.1139/bcb-2014-0116
  • Herrera-Rodríguez, M. A., M. P. Ramos-Godinez, A. Cano-Martínez, F. C. Segura, A. Ruiz-Ramírez, N. Pavón, E. Lira-Silva, et al. 2023. “Food-Grade Titanium Dioxide and Zinc Oxide Nanoparticles Induce Toxicity and Cardiac Damage after Oral Exposure in Rats.” Particle and Fibre Toxicology 20 (1): 43. https://doi.org/10.1186/s12989-023-00553-7
  • Hong, J. S., M. K. Park, M. S. Kim, J. H. Lim, G. J. Park, E. H. Maeng, J. H. Shin, et al. 2014. “Prenatal Development Toxicity Study of Zinc Oxide Nanoparticles in Rats.” International Journal of Nanomedicine 9 (Suppl. 2): 159–171. https://doi.org/10.2147/IJN.S57932
  • Jia, L., K. Yiyuan, Z. Wei, S. Bin, W. Limin, C. Liangjiao, and S. Longquan. 2017. “Ion-Shedding Zinc Oxide Nanoparticles Induce Microglial BV2 Cell Proliferation via the ERK and Akt Signaling Pathways.” Toxicological Sciences 156: 167–178. https://doi.org/10.1093/toxsci/kfw241
  • Jones, K., J. Morton, I. Smith, K. Jurkschat, A. H. Harding, and G. Evans. 2015. “Human In Vivo and In Vitro Studies on Gastrointestinal Absorption of Titanium Dioxide Nanoparticles.” Toxicology Letters 233 (2): 95–101. https://doi.org/10.1016/j.toxlet.2014.12.005
  • Karpha, M., and G. V. Lip. 2006. “The Pathophysiology of Target Organ Damage in Hypertension.” Minerva Cardioangiologica 54 (4): 417–429.
  • Lai, J. C., M. B. Lai, S. Jandhyam, V. V. Dukhande, A. Bhushan, C. K. Daniels, and S. W. Leung. 2008. “Exposure to Titanium Dioxide and Other Metallic Oxide Nanoparticles Induces Cytotoxicity on Human Neural Cells and Fibroblasts.” International Journal of Nanomedicine 3 (4): 533–545. https://doi.org/10.2147/ijn.s3234
  • Li, B., S. L. Chu, D. Yu, S. H. Chan, and A. Li. 2021. “Separation and Size Characterization of Highly Polydisperse Titanium Dioxide Nanoparticles (E171) in Powdered Beverages by Using Asymmetric Flow Field-Flow Fractionation Hyphenated with Multi-Angle Light Scattering and Inductively Coupled Plasma Mass Spectrometry.” Journal of Chromatography A 1643: 462059. https://doi.org/10.1016/j.chroma.2021.462059
  • Limongelli, Giuseppe, Daniele Masarone, Raffaella D’Alessandro, and Perry M. Elliott. 2012. “Mitochondrial Diseases and the Heart: An Overview of Molecular Basis, Diagnosis, Treatment and Clinical Course.” Future Cardiology 8 (1): 71–88. https://doi.org/10.2217/fca.11.79
  • Lowry, O. H., N. J. Rosebrough, A. Farr, and R. J. Randall. 1951. “Protein Measurement with the Folin Phenol Reagent.” Journal of Biological Chemistry 193 (1): 265–275.
  • Maiuri, M. C., E. Zalckvar, A. Kimchi, and G. Kroemer. 2007. “Self-Eating and Self-Killing: Crosstalk between Autophagy and Apoptosis.” Nature Reviews. Molecular Cell Biology 8 (9): 741–752. https://doi.org/10.1038/nrm2239
  • Majima, E., H. Koike, Y. M. Hong, Y. Shinohara, and H. Terada. 1993. “Characterization of Cysteine Residues of Mitochondrial ADP/ATP Carrier with the SH-Reagents Eosin 5-Maleimide and N-Ethylmaleimide.” Journal of Biological Chemistry 268 (29): 22181–22187.
  • Marín-García, J., A. T. Akhmedov, and G. W. Moe. 2013. “Mitochondria in Heart Failure: The Emerging Role of Mitochondrial Dynamics.” Heart Failure Reviews 18 (4): 439–456. https://doi.org/10.1007/s10741-012-9330-2
  • Mihai, C., W. B. Chrisler, Y. Xie, D. Hu, C. J. Szymanski, A. Tolic, J. A. Klein, J. N. Smith, B. J. Tarasevich, and G. Orr. 2015. “Intracellular Accumulation Dynamics and Fate of Zinc Ions in Alveolar Epithelial Cells Exposed to Airborne ZnO Nanoparticles at the Air–Liquid Interface.” Nanotoxicology 9 (1): 9–22. https://doi.org/10.3109/17435390.2013.859319
  • Mu, W., Y. Wang, C. Huang, Y. Fu, J. Li, H. Wang, X. Jia, and Q. Ba. 2019. “Effect of Long-Term Intake of Dietary Titanium Dioxide Nanoparticles on Intestine Inflammation in Mice.” Journal of Agricultural and Food Chemistry 67 (33): 9382–9389. https://doi.org/10.1021/acs.jafc.9b02391
  • Nagarajan, M., G. B. Maadurshni, G. K. Tharani, I. Udhayakumar, G. Kumar, K. P. Mani, J. Sivasubramanian, and J. Manivannan. 2022. “Exposure to Zinc Oxide Nanoparticles (ZnO-NPs) Induces Cardiovascular Toxicity and Exacerbates Pathogenesis – Role of Oxidative Stress and MAPK Signaling.” Chemico-Biological Interactions 351: 109719. https://doi.org/10.1016/j.cbi.2021.109719
  • Nguyen, B. Y., A. Ruiz-Velasco, T. Bui, L. Collins, X. Wang, and W. Liu. 2019. “Mitochondrial Function in the Heart: The Insight into Mechanisms and Therapeutic Potentials.” British Journal of Pharmacology 176 (22): 4302–4318. https://doi.org/10.1111/bph.14431
  • [NOM 062-ZOO-1999]. Diario Oficial de la Federación. 15. México: Organización Mundial de Sanidad Animal.
  • Paek, H. J., Y. J. Lee, H. E. Chung, N. H. Yoo, J. A. Lee, M. K. Kim, J. K. Lee, J. Jeong, and S. J. Choi. 2013. “Modulation of the Pharmacokinetics of Zinc Oxide Nanoparticles and Their Fates In Vivo.” Nanoscale 5 (23): 11416–11427. https://doi.org/10.1039/c3nr02140h
  • Pandurangan, M., and D. H. Kim. 2015. “In Vitro Toxicity of Zinc Oxide Nanoparticles: A Review.” Journal of Nanoparticle Research 17 (3): 158. https://doi.org/10.1007/s11051-015-2958-9
  • Persaud, I., A. J. Raghavendra, A. Paruthi, N. B. Alsaleh, V. C. Minarchick, J. R. Roede, R. Podila, and J. M. Brown. 2020. “Defect-Induced Electronic States Amplify the Cellular Toxicity of ZnO Nanoparticles.” Nanotoxicology 14 (2): 145–161. https://doi.org/10.1080/17435390.2019.1668067
  • Proquin, Héloïse, Carolina Rodríguez-Ibarra, Carolyn G. J. Moonen, Ismael M. Urrutia Ortega, Jacob J. Briedé, Theo M. de Kok, Henk van Loveren, and Yolanda I. Chirino. 2018. “Titanium Dioxide Food Additive (E171) Induces ROS Formation and Genotoxicity: Contribution of Micro and Nano-Sized Fractions.” Mutagenesis 32 (1): 139–149. https://doi.org/10.1093/mutage/gew051
  • Quirós, P. M. 2018. “Determination of Aconitase Activity: A Substrate of the Mitochondrial Lon Protease.” Methods in Molecular Biology (Clifton, N.J.) 1731: 49–56. https://doi.org/10.1007/978-1-4939-7595-2_5
  • Rubattu, S., B. Pagliaro, G. Pierelli, C. Santolamazza, S. D. Castro, S. Mennuni, and M. Volpe. 2014. “Pathogenesis of Target Organ Damage in Hypertension: Role of Mitochondrial Oxidative Stress.” International Journal of Molecular Sciences 16 (1): 823–839. https://doi.org/10.3390/ijms16010823
  • Sharma, V., D. Anderson, and A. Dhawan. 2012. “Zinc Oxide Nanoparticles Induce Oxidative DNA Damage and ROS-Triggered Mitochondria Mediated Apoptosis in Human Liver Cells (HepG2).” Apoptosis 17 (8): 852–870. https://doi.org/10.1007/s10495-012-0705-6
  • Singh, S. 2019. “Zinc Oxide Nanoparticles Impacts: Cytotoxicity, Genotoxicity, Developmental Toxicity, and Neurotoxicity.” Toxicology Mechanisms and Methods 29 (4): 300–311. https://doi.org/10.1080/15376516.2018.1553221
  • Skocaj, M., M. Filipic, J. Petkovic, and S. Novak. 2011. “Titanium Dioxide in Our Everyday Life; Is It Safe?” Radiology and Oncology 45 (4): 227–247. https://doi.org/10.2478/v10019-011-0037-0
  • Subramaniam, V. D., S. V. Prasad, A. Banerjee, M. Gopinath, R. Murugesan, F. Marotta, X. F. Sun, and S. Pathak. 2019. “Health Hazards of Nanoparticles: Understanding the Toxicity Mechanism of Nanosized ZnO in Cosmetic Products.” Drug and Chemical Toxicology 42 (1): 84–93. https://doi.org/10.1080/01480545.2018.1491987
  • Talamini, L., S. Gimondi, B. Violatto, F. Fiordaliso, F. Pedica, N. L. Tran, G. Sitia, et al. 2019. “Repeated Administration of the Food Additive E171 to Mice Results in Accumulation in Intestine and Liver and Promotes an Inflammatory Status.” Nanotoxicology 13 (8): 1087–1101. https://doi.org/10.1080/17435390.2019.1640910
  • Vandebriel, R. J., and W. H. De Jong. 2012. “A Review of Mammalian Toxicity of ZnO Nanoparticles.” Nanotechnology, Science and Applications 5: 61–71. https://doi.org/10.2147/NSA.S23932
  • Varughese, J. T., S. K. Buchanan, and A. S. Pitt. 2021. “The Role of Voltage-Dependent Anion Channel in Mitochondrial Dysfunction and Human Disease.” Cells 10 (7): 1737. https://doi.org/10.3390/cells10071737
  • Wang, C., J. Lu, L. Zhou, J. Li, J. Xu, W. Li, L. Zhang, X. Zhong, and T. Wang. 2016. “Effects of Long-Term Exposure to Zinc Oxide Nanoparticles on Development, Zinc Metabolism and Biodistribution of Minerals (Zn, Fe, Cu, Mn) in Mice.” PLOS One 11 (10): e0164434. https://doi.org/10.1371/journal.pone.0164434
  • Weir, A., P. Westerhoff, L. Fabricius, K. Hristovski, and N. von Goetz. 2012. “Titanium Dioxide Nanoparticles in Food and Personal Care Product.” Environmental Science & Technology 46 (4): 2242–2250. https://doi.org/10.1021/es204168d
  • Wu, D., A. Dasgupta, A. D. Read, R. E. T. Bentley, M. Motamed, K. H. Chen, R. Al-Qazazi, et al. 2021. “Oxygen Sensing, Mitochondrial Biology and Experimental Therapeutics for Pulmonary Hypertension and Cancer.” Free Radical Biology & Medicine 170: 150–178. https://doi.org/10.1016/j.freeradbiomed.2020.12.452
  • Xue, C., J. Wu, F. Lan, W. Liu, X. Yang, F. Zeng, and H. Xu. 2010. “Nano Titanium Dioxide Induces the Generation of ROS and Potential Damage in HaCaT Cells under UVA Irradiation.” Journal of Nanoscience and Nanotechnology 10 (12): 8500–8507. https://doi.org/10.1166/jnn.2010.2682
  • Zhao, J., L. Bowman, X. Zhang, V. Vallyathan, S. H. Young, V. Castranova, and M. Ding. 2009. “Titanium Dioxide (TiO2) Nanoparticles Induce JB6 Cell Apoptosis through Activation of the Caspase-8/Bid and Mitochondrial Pathways.” Journal of Toxicology and Environmental Health. Part A 72 (19): 1141–1149. https://doi.org/10.1080/15287390903091764
  • Ziglari, T., D. S. Anderson, and A. Holian. 2020. “Determination of the Relative Contribution of the Non-Dissolved Fraction of ZnO NP on Membrane Permeability and Cytotoxicity.” Inhalation Toxicology 32 (2): 86–95. https://doi.org/10.1080/08958378.2020.1743394

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.