229
Views
36
CrossRef citations to date
0
Altmetric
Original

Nanoparticle reactivity toward dithiothreitol

, &
Pages 121-129 | Received 28 Feb 2008, Published online: 10 Jul 2009

References

  • Balbus J, Maynard A, Colvin V, Castranova V, Daston G, Denison R, Dreher K, Goering P, Goldberg A, Kulinowski K, et al. Meeting report: Hazard assessment for Nanoparticles – report from an interdisciplinary workshop. Environ Health Perspect 2007; 115(11)1654–1659
  • Barrett E, Joyner L, Halenda P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 1951; 73: 373–380
  • Bérubé K, Jones T, Williamson B, Winters C, Morgan A, Richards R. Physicochemical characterisation of diesel exhaust particles: Factors for assessing biological activity. Atmos Environ 1999; 33: 1599–1614
  • Borm PJ, Kelly F, Künzli N, Schins RPF, Donaldson K. Oxidant generation by particulate matter: From biologically effective dose to a promising, novel metric. Occup Environ Med 2007; 64: 73–74
  • Briedé JJ, De Kok T, Hogervorst J, Moonen E, Op Den Camp C, Kleinjans J. Development and application of an electron spin resonance spectrometry method for the determination of oxygen free radical formation by particulate matter. Environ Sci Technol 2005; 39: 8420–8426
  • Cho A, Sioutas C, Miguel A, Kumagai Y, Schmitz D, Singh M, Eiguren-Fernandez A, Froines J. Redox activity of airbone particulate matter at different sites in the Los Angeles Basin. Environ Res 2005; 99: 40–47
  • De Vizcaya-Ruiz A, Gutiérrez-Castillo M, Uribe-Ramirez M, Cebriàn M, Mugica-Alvarez V, Sepulveda J, Rosas I, Salinas E, Garcia-Cuéllar C, Martinez F, et al. Characterization and in vitro biological effects of concentrated particulate matter from Mexico City. Atmos Environ 2006; 40: S583–592
  • Dick C, Brown D, Donaldson K, Stone V. The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhal Toxicol 2003; 15: 39–52
  • Donaldson K, Beswick PH, Gilmour PS. Free radical activity associated with the surface of particles: A unifying factor in determining biological activity?. Toxicol Lett 1996; 88: 293–298
  • Foucaud l, Wilson M, Brown D, Stone V. Measurement of reactive species production by nanoparticles prepared in biologically relevant media. Toxicol Lett 2007; 174: 1–9
  • Gao N, Keane MJ, Ong T, Ye J, Miller W, Wallace W. Effects of phospholipid surfactant on apoptosis induction by respirable quartz and kaolin in NR8383 rat pulmonary macrophages. Toxicol Appl Pharmacol 2001; 175: 217–225
  • Geller M., Ntziachristos L, Mamakos A, Samaras Z, Schmitz D, Froines J, Sioutas C. Physicochemical and redox characteristics of particulate matter (PM) emitted form gasoline and diesel passenger cars. Atmos Environ 2006; 40: 6988–7004
  • Green F, Schürch S, Gehr P, Lee M. The role of surfactant in disease associated with particle exposure. Particle-Lung interactions, P Gehr, J Heyder. Marcel Dekker, Basel 2000; 533–576
  • Hung H, Wang C. Experimental determination of reactive oxygen species in Taipei aerosols. J Aerosol Sci 2001; 32: 1201–1211
  • Jalava P, Salonen R, Hälinen A, Sillanpää M, Sandell E, Hirvonen M. Effects of sample preparation on chemistry, cytotoxicity and inflammatory responses induced by air particulate matter. Inhal Toxicol 2005; 17: 107–117
  • Kendall M, Brown L, Trought K. Molecular adsorption at particle surfaces: A PM toxicity mediation mechanism. Inhal Toxiol 2004; 16(S1)99–105
  • Kendall M. Fine airborne urban particles (PM2.5) sequester lung surfactant and amino acids from human lung lavage. Am J Physiol Lung Cell Mol Physiol 2007; 293: L1053–1058
  • Koike E, Kobayashi T. Chemical and biological oxidative effects of carbon black nanoparticles. Chemosphere 2006; 65: 946–951
  • Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 2003; 111(4)455–460
  • Limbach L, Wick P, Manser P, Grass R, Bruinink A, Stark W. Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 2007; 41: 4158–4163
  • Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science 2006; 311: 622–627
  • Ntziachristos L, Froines J, Cho A, Sioutas C. Relationship between redox activity and chemical speciation of size-fractionated particulate matter. Part Fibre Toxicol 2007; 4: 5
  • Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Part Fibre Toxicol 2005; 2: 8
  • Pigment Blacks. Technical Data Europe [Internet]. Frankfurt, Germany; [cited 2008 Jan 28] Available from internetwebsite: http://www.degussa-fp.com/fp/en/publikationen/brosch/default.htm.
  • Rogerieux F, Maillot-Maréchal E, Moisan F, Robidel F, Elgrabli D, Delalain P, Lacroix G. Time course of TiO2 and carbon black nanoparticles induced pulmonary inflammation in rats. Toxicol Lett 2007; 172S: S122
  • Sager T, Porter D, Robinson V, Lindsley W, Schwegler-Berry D, Castranova V. Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity. Nanotoxicology 2007; 1(2)118–129
  • Shi T, Schins RPF, Knaapen AM, Kuhlbusch T, Pitz M, Heinrich J, Borm PJA. Hydroxyl radical generation by electron paramagnetic resonance as a new method to monitor ambient particulate matter composition. J Environ Monit 2003; 5: 550–556
  • Sun Q, Fu Y, Liu J, Auroux A, Shen J. Structural, acidic and redox properties of V2O5−TiO2-SiO42 −  catalysts. Appl Catal A 2008; 334: 26–34
  • Wallace W, Keane M, Murray D, Chisholm W, Maynard A, Ong T. Phospholipid lung surfactant and nanoparticle surface toxicity: Lessons from diesel soots and silicate dusts. J Nanopart Res 2007; 9: 23–38
  • Warheit D, Webb T, Reed K, Frerichs S, Sayes C. Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: Differential responses related to surface properties. Toxicology 2007; 230: 90–104
  • Wick P, Manser P, Limbach L, Dettlaff-Weglikowska U, Krumeich F, Roth S, Stark W, Bruinink A. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 2007; 168: 121–131
  • Yampol'skaya G, Dolzhikova V. 2007. Surface modification of polystyrene with the bovine serum albumin-Tween 80 complex and a forecast of biocompatibility. Moscow Univ Chem Bull 62(1):27–31.
  • Zhang Z, Feng SS. In vitro investigation on poly(lactide)-Tween 80 copolymer nanoparticles fabricated by dialysis method for chemotherapy. Biomacromolecules 2006; 7: 1139–1146
  • Zielinski H, Mudway I, Bérubé K, Murphy S, Richards R, Kelly F. Modeling the interactions of particulates with epithelial lining fluid antioxidants. Am J Physiol Lung Cell Mol Physiol 1999; 277: 719–726

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.