Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 115, 2016 - Issue 3
1,731
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

Heat flux mapping of oxyacetylene flames and their use to characterise Cf-HfB2 compositesFootnote

, , , &
Pages 158-165 | Received 24 Apr 2014, Accepted 28 Sep 2015, Published online: 09 Feb 2016

References

  • E. Wuchina, E. Opila, M. Opeka, W. Fahrenholtz and I. Talmy: ‘UHTCs: Ultra-high temperature ceramic materials for extreme environment applications’, Electrochem. Soc. Interface, 2007, 16, (4), 30–36.
  • F. Monteverde, A. Bellosi and L. Scatteia: ‘Processing and properties of ultra-high temperature ceramics for space applications’, Mater. Sci. Eng. A, 2008, 485, (1), 415–421. doi: 10.1016/j.msea.2007.08.054
  • W. G. Fahrenholtz, G. E. Hilmas, I. G. Talmy and J. A. Zaykoski: ‘Refractory diborides of zirconium and hafnium’, J. Am. Ceram. Soc., 2007, 90, (5), 1347–1364. doi: 10.1111/j.1551-2916.2007.01583.x
  • M. M. Opeka, I. G. Talmy and J. A. Zaykoski: ‘Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: Theoretical considerations and historical experience’, J. Mater. Sci., 2004, 39, (19), 5887–5904. doi: 10.1023/B:JMSC.0000041686.21788.77
  • A. L. Chamberlain, W. G. Fahrenholtz, G. E. Hilmas and D. T. Ellerby: ‘Characterization of zirconium diboride for thermal protection systems’, Key Eng. Mater., 2004, 264, 493–496. doi: 10.4028/www.scientific.net/KEM.264-268.493
  • R. Savino, M. De Stefano Fumo, D. Paterna and M. Serpico: ‘Aerothermodynamic study of UHTC-based thermal protection systems’, Aerosp. Sci. Technol., 2005, 9, (2), 151–160. doi: 10.1016/j.ast.2004.12.003
  • S. R. Levine, E. J. Opila, M. C. Halbig, J. D. Kiser, M. Singh and J. A. Salem: ‘Evaluation of ultra-high temperature ceramics for aeropropulsion use’, J. Eur. Ceram. Soc., 2002, 22, (14–15), 2757–2767. doi: 10.1016/S0955-2219(02)00140-1
  • M. Gasch, D. Ellerby, E. Irby, S. Beckman, M. Gusman and S. Johnson: ‘Processing, properties and arc jet oxidation of hafnium diboride/silicon carbide ultra high temperature ceramics’, J. Mater. Sci., 2004, 39, (19), 5925–5937. doi: 10.1023/B:JMSC.0000041689.90456.af
  • X. Zhang, P. Hu, J. Han and S. Meng: ‘Ablation behavior of ZrB2–SiC ultra-high temperature ceramics under simulated atmospheric re-entry conditions’, Compos. Sci. Technol., 2008, 68, (7–8), 1718–1726. doi: 10.1016/j.compscitech.2008.02.009
  • I. G. Talmy, J. A. Zaykoski and M. M. Opeka: ‘Synthesis, processing and properties of TaC–TaB2–C ceramics’, J. Eur. Ceram. Soc., 2010, 30, (11), 2253–2263. doi: 10.1016/j.jeurceramsoc.2010.01.032
  • I. G. Talmy, J. A. Zaykoski and C. A. Martin: ‘Flexural creep deformation of ZrB2/SiC ceramics in oxidizing atmosphere’, J. Am. Ceram. Soc., 2008, 91, (5), 1441–1447. doi: 10.1111/j.1551-2916.2008.02370.x
  • D. Sciti, V. Medri and L. Silvestroni: ‘Oxidation behaviour of HfB2–15 vol.% TaSi2 at low, intermediate and high temperatures’, Scr. Mater., 2010, 63, (6), 601–604. doi: 10.1016/j.scriptamat.2010.05.050
  • C. Carney: ‘Oxidation resistance of hafnium diboride-silicon carbide from 1400 to 2000°C’, J. Mater. Sci., 2009, 44, (20), 5673–5681. doi: 10.1007/s10853-009-3799-7
  • S. N. Karlsdottir, J. W. Halloran, F. Monteverde and A. Bellosi: ‘Oxidation of ZrB2-SiC: Comparison of furnace heated coupons and self-heated ribbon specimens’, in ‘Mechanical properties and performance of engineering ceramics and composites III’, 327–336; 2007, Wiley.
  • S. N. Karlsdottir and J. W. Halloran: ‘Rapid oxidation characterization of ultra-high temperature ceramics’, J. Am. Ceram. Soc., 2007, 90, (10), 3233–3238. doi: 10.1111/j.1551-2916.2007.01861.x
  • S. Gangireddy, S. N. Karlsdottir, S. J. Norton, J. C. Tucker and J. W. Halloran: ‘In situ microscopy observation of liquid flow, zirconia growth, and CO bubble formation during high temperature oxidation of zirconium diboride–silicon carbide’, J. Eur. Ceram. Soc., 2010, 30, (11), 2365–2374. doi: 10.1016/j.jeurceramsoc.2010.01.034
  • D. D. Jayaseelan, H. Jackson, E. Eakins, P. Brown and W. E. Lee: ‘Laser modified microstructures in ZrB2, ZrB2/SiC and ZrC’, J. Eur. Ceram. Soc., 2010, 30, (11), 2279–2288. doi: 10.1016/j.jeurceramsoc.2010.03.001
  • Y. Wang, X. Zhu, L. Zhang and L. Cheng: ‘Reaction kinetics and ablation properties of C/C–ZrC composites fabricated by reactive melt infiltration’, Ceram. Int., 2011, 37, (4), 1277–1283. doi: 10.1016/j.ceramint.2010.12.002
  • A. Paul, D. D. Jayaseelan, S. Venugopal, E. Zapata-Solvas, J. Binner, B. Vaidhyanathan, A. Heaton, P. Brown and W. E. Lee: ‘UHTC composites for hypersonic applications’, Am. Ceram. Soc. Bull., 2012, 91, 22–29.
  • F. Monteverde and R. Savino: ‘Stability of ultra-high-temperature ZrB2–SiC ceramics under simulated atmospheric re-entry conditions’, J. Eur. Ceram. Soc., 2007, 27, (16), 4797–4805. doi: 10.1016/j.jeurceramsoc.2007.02.201
  • F. Monteverde, R. Savino, M. D. S. Fumo and A. Di Maso: ‘Plasma wind tunnel testing of ultra-high temperature ZrB2–SiC composites under hypersonic re-entry conditions’, J. Eur. Ceram. Soc., 2010, 30, (11), 2313–2321. doi: 10.1016/j.jeurceramsoc.2010.01.029
  • R. Savino, M. De Stefano Fumo, D. Paterna, A. Di Maso and F. Monteverde: ‘Arc-jet testing of ultra-high-temperature-ceramics’, Aerosp. Sci. Technol., 2010, 14, (3), 178–187. doi: 10.1016/j.ast.2009.12.004
  • E. Opila, S. Levine and J. Lorincz: ‘Oxidation of ZrB2- and HfB2-based ultra-high temperature ceramics: Effect of Ta additions’, J. Mater. Sci., 2004, 39, (19), 5969–5977. doi: 10.1023/B:JMSC.0000041693.32531.d1
  • T. A. Parthasarathy, M. D. Petry, G. Jefferson, M. K. Cinibulk, T. Mathur and M. R. Gruber: ‘Development of a test to evaluate aerothermal response of materials to hypersonic flow using a scramjet wind tunnel’, Int. J. Appl. Ceram. Technol., 2011, 8, (4), 832–847. doi: 10.1111/j.1744-7402.2010.02515.x
  • Z. Chen, D. Fang, Y. Miao and B. Yan: ‘Comparison of morphology and microstructure of ablation centre of C/SiC composites by oxy-acetylene torch at 2900 and 3550°C’, Corros. Sci., 2008, 50, (12), 3378–3381. doi: 10.1016/j.corsci.2008.07.019
  • Z. Chen and B. Yan: ‘Morphology and microstructure of three-dimensional orthogonal C/SiC composites ablated by an oxyacetylene flame at 2900°C’, Int. J. Appl. Ceram. Technol., 2009, 6, (2), 164–170. doi: 10.1111/j.1744-7402.2008.02297.x
  • S. R. Levine, E. J. Opila, R. C. Robinson and J. A. Lorincz: ‘Characterization of an ultra-high temperature ceramic composite’, pp. 1–26, NASA TM-2004-213085, NASA technical report, 2004.
  • J. C. Han, X. D. He and S. Y. Du: ‘Oxidation and ablation of 3D carbon-carbon composite at up to 3000°C’, Carbon, 1995, 33, (4), 473–478. doi: 10.1016/0008-6223(94)00172-V
  • J. Han, P. Hu, X. Zhang, S. Meng and W. Han: ‘Oxidation-resistant ZrB2–SiC composites at 2200°C’, Compos. Sci. Technol., 2008, 68, (3–4), 799–806. doi: 10.1016/j.compscitech.2007.08.017
  • X. Li, J. Shi, H. Zhang, G. Zhang, Q. Guo and L. Liu: ‘Ablation resistance and mechanical/conductive properties of ZrB2 reinforced carbon based composites’, J. Compos. Mater., 2007, 41, (3), 353–366. doi: 10.1177/0021998306063376
  • M. C. L. Patterson: ‘Oxidation resistant HfC-TaC rocket thruster for high performance propellants’, NASA report NAS3-27272; 1999.
  • G. M. Song, Y. J. Wang and Y. Zhou: ‘Elevated temperature ablation resistance and thermophysical properties of tungsten matrix composites reinforced with ZrC particles’, J. Mater. Sci., 2001, 36, (19), 4625–4631. doi: 10.1023/A:1017989913219
  • G.-M. Song, Y. Zhou and Y.-J. Wang: ‘Effect of carbide particles on the ablation properties of tungsten composites’, Mater. Charact.,2003, 50, (4–5), 293–303. doi: 10.1016/S1044-5803(03)00123-2
  • S. Tang, J. Deng, S. Wang, W. Liu and K. Yang: ‘Ablation behaviors of ultra-high temperature ceramic composites’, Mater. Sci. Eng. A, 2007, 465, (1–2), 1–7. doi: 10.1016/j.msea.2007.02.040
  • S. Kalpakjian and S. R. Schmid: ‘Manufacturing engineering and technology’, 6th edn, 865–899; London, Prentice-Hall.
  • A. Paul, J. G. P. Binner, B. Vaidhyanathan, A. C. J. Heaton and P. M. Brown: ‘Oxyacetylene torch testing and microstructural characterization of tantalum carbide’, J. Microsc., 2013, 250, (2), 122–129. doi: 10.1111/jmi.12028
  • A. Paul, S. Venugopal, J. G. P. Binner, B. Vaidhyanathan, A. C. J. Heaton and P. M. Brown: ‘UHTC–carbon fibre composites: Preparation, oxyacetylene torch testing and characterisation’, J. Eur. Ceram. Soc., 2013, 33, (2), 423–432. doi: 10.1016/j.jeurceramsoc.2012.08.018
  • R. Lindstedt and G. Skevis: ‘Chemistry of acetylene flames’, Compos. Sci. Technol., 1997, 125, (1–6), 73–137. doi: 10.1080/00102209708935656

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.