1,968
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Microscopic texture characterisation in piezoceramics

Pages 112-122 | Received 20 May 2015, Accepted 08 Dec 2015, Published online: 19 Jan 2016

References

  • A. J. Moulson and J. M. Herbert: ‘Electroceramics: Materials, properties, applications’, 2nd edn; 2003, Southern Gate, Wiley.
  • C. A. Randall, A. Kelnberger, G. Y. Yang, R. E. Eitel and T. R. Shrout: ‘High strain piezoelectric multilayer actuators? A material science and engineering challenge’, J. Electroceramics, 2005, 14, 177–191. doi: 10.1007/s10832-005-0956-5
  • Y. Tao, X. Wu, D. Xiao, Y. Wu, H. Cui, X. Xi and B. Zhu: ‘Design, analysis and experiment of a novel ring vibratory gyroscope’, Sens. Act. A: Phys., 2011, 168, 286–299. doi: 10.1016/j.sna.2011.04.039
  • C.-L. Chu and S.-H. Fan: ‘A novel long-travel piezoelectric-driven linear nanopositioning stage’, Precis. Eng., 2006, 30, 85–95. doi: 10.1016/j.precisioneng.2005.05.002
  • P. Muralt: ‘Recent progress in materials issues for piezoelectric MEMS’, J. Am. Ceram. Soc., 2008, 91, 1385–1396. doi: 10.1111/j.1551-2916.2008.02421.x
  • Y. B. Jeon, R. Sood, J. Jeong and S.-G. Kim: ‘MEMS power generator with transverse mode thin film PZT’, Sens. Act. A: Phys., 2005, 122, 16–22. doi: 10.1016/j.sna.2004.12.032
  • W. J. Merz: ‘Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals’, Phys. Rev., 1954, 95, 690–698. doi: 10.1103/PhysRev.95.690
  • F. Xu, S. Trolier-McKinstry, W. Ren, B. Xu, Z.-L. Xie and K. J. Hemker: ‘Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films’, J. Appl. Phys., 2001, 89, 1336–1348. doi: 10.1063/1.1325005
  • H. Kungl, R. Theissmann, M. Knapp, C. Baehtz, H. Fuess, S. Wagner, T. Fett and M. J. Hoffmann: ‘Estimation of strain from piezoelectric effect and domain switching in morphotropic PZT by combined analysis of macroscopic strain measurements and synchrotron X-ray data’, Acta Mater., 2007, 55, 1849–1861. doi: 10.1016/j.actamat.2006.10.046
  • M. Davis, M. Budimir, D. Damjanovic and N. Setter: ‘Rotator and extender ferroelectrics: Importance of the shear coefficient to the piezoelectric properties of domain-engineered crystals and ceramics’, J. Appl. Phys., 2007, 101, 054112-1–054112-10. doi: 10.1063/1.2653925
  • W. Zhang and K. Bhattacharya: ‘A computational model of ferroelectric domains. Part I: Model formulation and domain switching’, Acta Mater., 2005, 53, 185–198. doi: 10.1016/j.actamat.2004.09.016
  • D. A. Hall, A. Steuwer, B. Cherdhirunkorn, P. J. Withers and T. Mori: ‘Micromechanics of residual stress and texture development due to poling in polycrystalline ferroelectric ceramics’, J. Mech. Phys. Solids, 2005, 53, 249–260. doi: 10.1016/j.jmps.2004.07.002
  • D. A. Hall, A. Steuwer, B. Cherdhirunkorn, T. Mori and P. J. Withers: ‘Analysis of elastic strain and crystallographic texture in poled rhombohedral PZT ceramics’, Acta Mater., 2006, 54, 3075–3083. doi: 10.1016/j.actamat.2006.02.043
  • D. Damjanovic: ‘Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics’, J. Am. Ceram. Soc., 2005, 88, 2663–2676. doi: 10.1111/j.1551-2916.2005.00671.x
  • J. L. Jones, E. B. Slamovich and K. J. Bowman: ‘Domain texture distributions in tetragonal lead zirconate titanate by x-ray and neutron diffraction’, J. Appl. Phys., 2005, 97, 034113-1–034113-6.
  • J. L. Jones, M. Hoffman and K. J. Bowman: ‘Saturated domain switching textures and strains in ferroelastic ceramics’, J. Appl. Phys., 2005, 98, 024115-1–024115-6.
  • G. Tutuncu, B. Li, K. Bowman and J. L. Jones: ‘Domain wall motion and electromechanical strain in lead-free piezoelectrics: Insight from the model system (1 − x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 using in situ high-energy X-ray diffraction during application of electric fields’, J. Appl. Phys., 2014, 115, 144104-1–144104-7. doi: 10.1063/1.4870934
  • A. Pramanick, D. Damjanovic, J. E. Daniels, J. C. Nino and J. L. Jones: ‘Origins of electro-mechanical coupling in polycrystalline ferroelectrics during subcoercive electrical loading’, J. Am. Ceram. Soc., 2011, 94, 293–309. doi: 10.1111/j.1551-2916.2010.04240.x
  • F. X. Li and R. K. N. D. Rajapakse: ‘Analytical saturated domain orientation textures and electromechanical properties of ferroelectric ceramics due to electric/mechanical poling’, J. Appl. Phys., 2007, 101, 054110-1–054110-8.
  • J. L. Jones: ‘The use of diffraction in the characterization of piezoelectric materials’, J. Electroceramics, 2007, 19, 69–81. doi: 10.1007/s10832-007-9048-z
  • J. L. Jones, B. J. Iverson and K. J. Bowman: ‘Texture and anisotropy of polycrystalline piezoelectrics’, J. Am. Ceram. Soc., 2007, 90, 2297–2314. doi: 10.1111/j.1551-2916.2007.01820.x
  • J. L. Jones, S. M. Motahari, M. Varlioglu, U. Lienert, J. V. Bernier, M. Hoffman and E. Üstündag: ‘Crack tip process zone domain switching in a soft lead zirconate titanate ceramic’, Acta Mater., 2007, 55, 5538–5548. doi: 10.1016/j.actamat.2007.06.012
  • D. Damjanovic: ‘A morphotropic phase boundary system based on polarization rotation and polarization extension’, Appl. Phys. Lett., 2010, 97, 062906-1–062906-3. doi: 10.1063/1.3479479
  • B. Noheda, D. E. Cox, G. Shirane, R. Guo, B. Jones and L. E. Cross: ‘Stability of the monoclinic phase in the ferroelectric perovskite PbZr1−xTixO3’, Phys. Rev. B, 2000, 63, 014103-1–014103-9. doi: 10.1103/PhysRevB.63.014103
  • R. Guo, L. E. Cross, S.-E. Park, B. Noheda, D. E. Cox and G. Shirane: ‘Origin of the high piezoelectric response in PbZr1−xTixO3’, Phys. Rev. Lett., 2000, 84, 5423–5426. doi: 10.1103/PhysRevLett.84.5423
  • H. Kungl and M. J. Hoffmann: ‘Temperature dependence of poling strain and strain under high electric fields in LaSr-doped morphotropic PZT and its relation to changes in structural characteristics’, Acta Mater., 2007, 55, 5780–5791. doi: 10.1016/j.actamat.2007.06.035
  • D. S. Keeble, F. Benabdallah, P. A. Thomas, M. Maglione and J. Kreisel: ‘Revised structural phase diagram of (Ba0.7Ca0.3TiO3) – (BaZr0.2Ti0.8O3)’, Appl. Phys. Lett., 2013, 102, 092903-1–092903-5. doi: 10.1063/1.4793400
  • W. Liu and X. Ren: ‘Large piezoelectric effect in Pb-free ceramics’, Phys. Rev. Lett., 2009, 103, 257602-1–257602-4.
  • H. Yilmaz, S. Trolier-McKinstry and G. L. Messing: ‘(Reactive) templated grain growth of textured sodium bismuth titanate (Na1/2Bi1/2TiO3-BaTiO3) ceramics – II dielectric and piezoelectric properties’, J. Electroceramics, 2003, 11, 217–226. doi: 10.1023/B:JECR.0000026376.48324.21
  • J. A. Horn, S. C. Zhang, U. Selvaraj, G. L. Messing and S. Trolier-McKinstry: ‘Templated grain growth of textured bismuth titanate’, J. Am. Ceram. Soc., 1999, 82, 921–926. doi: 10.1111/j.1151-2916.1999.tb01854.x
  • G. L. Messing, S. Trolier-McKinstry, E. M. Sabolsky, C. Duran, S. Kwon, B. Brahmaroutu, P. Park, H. Yilmaz, P. W. Rehrig, K. B. Eitel, E. Suvaci, M. Seabaugh and K. S. Oh: ‘Templated Grain Growth of Textured Piezoelectric Ceramics’, Crit. Rev. Solid State Mater. Sci., 2004, 29, 45–96. doi: 10.1080/10408430490490905
  • Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya and M. Nakamura: ‘Lead-free piezoceramics’, Nature, 2004, 432, 84–87. doi: 10.1038/nature03028
  • A. J. Schwartz, M. Kumar, B. L. Adams and D. P. Field, editors, ‘Electron backscatter diffraction in materials science’; 2009, Boston, Springer US.
  • H.-J. Bunge: ‘Texture analysis in materials science: Mathematical methods’; 1969, Berlin, Akademie-Verlag.
  • U. F. Kocks, C. N. Tomé and H.-R. Wenk: ‘Texture and anisotropy: Preferred orientations in polycrystals and their effect on materials properties’; 2000, Cambridge, Cambridge University Press.
  • H. J. Bunge: ‘Three-dimensional texture analysis’, Int. Mater. Rev., 1987, 32, 265–291. doi: 10.1179/imr.1987.32.1.265
  • S. Röhrig, C. Krautgasser, R. Bermejo, J. L. Jones, P. Supancic and M. Deluca: J. Eur. Ceram. Soc., 2015, 35, (15), 4321–4325. doi: 10.1016/j.jeurceramsoc.2015.08.003
  • J.-H. Chen, B.-H. Hwang, T.-C. Hsu and H.-Y. Lu: ‘Domain switching of barium titanate ceramics induced by surface grinding’, Mater. Chem. Phys., 2005, 91, 67–72. doi: 10.1016/j.matchemphys.2004.10.048
  • P. Potnis, N.-T. Tsou and J. Huber: ‘A review of domain modelling and domain imaging techniques in ferroelectric crystals’, Materials, 2011, 4, 417–447. doi: 10.3390/ma4020417
  • J. Shang and X. Tan: ‘Indentation-induced domain switching in Pb(Mg1/3Nb2/3)O3–PbTiO3 crystal’, Acta Mater., 2001, 49, 2993–2999. doi: 10.1016/S1359-6454(01)00199-9
  • C. T. Sun and S. B. Park: ‘Measuring fracture toughness of piezoceramics by vickers indentation under the influence of electric fields’, Ferroelectrics, 2000, 248, 79–95. doi: 10.1080/00150190008223670
  • W. Yang, F. Fang and M. Tao: ‘Critical role of domain switching on the fracture toughness of poled ferroelectrics’, Int. J. Solids Struct., 2001, 38, 2203–2211. doi: 10.1016/S0020-7683(00)00162-1
  • G. A. Schneider and V. Heyer: ‘Influence of the electric field on Vickers indentation crack growth in BaTiO3’, J. Eur. Ceram. Soc., 1999, 19, 1299–1306. doi: 10.1016/S0955-2219(98)00424-5
  • Y. W. Li and F. X. Li: ‘Large anisotropy of fracture toughness in mechanically poled/depoled ferroelectric ceramics’, Scr. Mater., 2010, 62, 313–316. doi: 10.1016/j.scriptamat.2009.11.032
  • T. Fett, D. Munz and G. Thun: ‘Bending strength of a PZT ceramic under electric fields’, J. Eur. Ceram. Soc., 2003, 23, 195–202. doi: 10.1016/S0955-2219(02)00174-7
  • G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall: ‘A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements’, J. Am. Ceram. Soc., 1981, 64, 533–538. doi: 10.1111/j.1151-2916.1981.tb10320.x
  • M. Deluca, R. Bermejo, H. Grünbichler, V. Presser, R. Danzer and K. G. Nickel: ‘Raman spectroscopy for the investigation of indentation-induced domain texturing in lead zirconate titanate piezoceramics’, Scripta Mater., 2010, 63, 343–346. doi: 10.1016/j.scriptamat.2010.04.040
  • E. C. Subbarao, M. C. McQuarrie and W. R. Buessem: ‘Domain effects in polycrystalline barium Titanate’, J. Appl. Phys., 1957, 28, 1194–1200. doi: 10.1063/1.1722606
  • S. Li, A. S. Bhalla, R. E. Newnham, L. E. Cross and C.-Y. Huang: ‘90° domain reversal in Pb(ZrxTi1-x)O3 ceramics’, J. Mater. Sci., 1994, 29, 1290–1294. doi: 10.1007/BF00975077
  • D. A. Hall, A. Steuwer, B. Cherdhirunkorn, P. J. Withers and T. Mori: ‘Texture of poled tetragonal PZT detected by synchrotron X-ray diffraction and micromechanics analysis’, Mater. Sci. Eng. A, 2005, 409, 206–210. doi: 10.1016/j.msea.2005.05.115
  • L. Daniel, D. A. Hall, K. G. Webber, A. King and P. J. Withers: ‘Identification of crystalline elastic anisotropy in PZT ceramics from in-situ blocking stress measurements’, J. Appl. Phys., 2014, 115, 174102-1–174102-14.
  • M. Marsilius, T. Granzow and J. L. Jones: ‘Effect of electrical and mechanical poling history on domain orientation and piezoelectric properties of soft and hard PZT ceramics’, Sci. Technol. Adv. Mater., 2011, 12, 015002-1–015002-8. doi: 10.1088/1468-6996/12/1/015002
  • M. J. Hoffmann, M. Hammer, A. Endriss and D. C. Lupascu: ‘Correlation between microstructure, strain behavior, and acoustic emission of soft PZT ceramics’, Acta Mater., 2001, 49, 1301–1310. doi: 10.1016/S1359-6454(01)00025-8
  • S. Pojprapai (Imlao), J. L. Jones, T. Vodenitcharova, J. V. Bernier and M. Hoffman: ‘Investigation of the domain switching zone near a crack tip in pre-poled lead zirconate titanate ceramic via in situ X-ray diffraction’, Scr. Mater., 2011, 64, 1–4. doi: 10.1016/j.scriptamat.2010.08.053
  • S. Pojprapai (Imlao), J. L. Jones, A. J. Studer, J. Russell, N. Valanoor and M. Hoffman: ‘Ferroelastic domain switching fatigue in lead zirconate titanate ceramics’, Acta Mater., 2008, 56, 1577–1587. doi: 10.1016/j.actamat.2007.11.044
  • R. A. Young, E. Prince and R. A. Sparks: ‘Suggested guidelines for the publication of Rietveld analyses and pattern decomposition studies’, J. Appl. Crystallogr., 1982, 15, 357–359. doi: 10.1107/S0021889882012138
  • L. B. McCusker, R. B. Von Dreele, D. E. Cox, D. Louër and P. Scardi: ‘Rietveld refinement guidelines’, J. Appl. Crystallogr., 1999, 32, 36–50. doi: 10.1107/S0021889898009856
  • M. R. Koblischka and A. Koblischka-Veneva: ‘Applications of the electron backscatter diffraction technique to ceramic materials’, Phase Transitions, 2013, 86, 651–660. doi: 10.1080/01411594.2012.726729
  • M. U. Farooq, R. Villaurrutia, I. MacLaren, T. L. Burnett, T. P. Comyn, A. J. Bell, H. Kungl and M. J. Hoffmann: ‘Electron backscatter diffraction mapping of herringbone domain structures in tetragonal piezoelectrics’, J. Appl. Phys., 2008, 104, 024111-1–024111-8. doi: 10.1063/1.2956704
  • Y. Uetsuji, Y. Satou, H. Nagakura, H. Nishioka, H. Kuramae and K. Tsuchiya: ‘Crystal morphology analysis of piezoelectric ceramics using electron backscatter diffraction method and its application to multiscale finite element analysis’, J. Comput. Sci. Technol., 2008, 2, 568–577. doi: 10.1299/jcst.2.568
  • S. Serrano-Zabaleta, A. Larrea, H. Stegmann and C. Waltenberg: ‘Electron backscatter diffraction analysis of non-conductive samples using in-situ charge compensation’, Microsc. Anal., 2013, 9, 23–26.
  • S.-Y. Cheng, N.-J. Ho and H.-Y. Lu: ‘Crystallographic relationships of the {111} growth twins in tetragonal barium Titanate determined by electron-backscatter diffraction’, J. Am. Ceram. Soc., 2006, 89, 3470–3474. doi: 10.1111/j.1551-2916.2006.01231.x
  • R. E. García, B. D. Huey and J. E. Blendell: ‘Virtual piezoforce microscopy of polycrystalline ferroelectric films’, J. Appl. Phys., 2006, 100, 064105-1–064105-10.
  • T. L. Burnett, P. M. Weaver, J. F. Blackburn, M. Stewart and M. G. Cain: ‘Correlation of electron backscatter diffraction and piezoresponse force microscopy for the nanoscale characterization of ferroelectric domains in polycrystalline lead zirconate titanate’, J. Appl. Phys., 2010, 108, 042001-1–042001-7. doi: 10.1063/1.3474940
  • M. Okayasu, E. Sugiyama, K. Sato and M. Mizuno: ‘Observation of failure and domain switching in lead zirconate Titanate ceramics’, J. Solid Mech.: Mater. Eng., 2010, 4, 426–434.
  • M. Okayasu, K. Sato and M. Mizuno: ‘Influence of domain orientation on the mechanical properties of lead zirconate titanate piezoelectric ceramics’, J. Eur. Ceram. Soc., 2011, 31, 141–150. doi: 10.1016/j.jeurceramsoc.2010.09.003
  • M. Okayasu, K. Sato and Y. Kusaba: ‘Domain switching characteristics of lead zirconate titanate piezoelectric ceramics during mechanical compressive loading’, J. Eur. Ceram. Soc., 2011, 31, 129–140. doi: 10.1016/j.jeurceramsoc.2010.09.001
  • J. A. Howell, M. D. Vaudin and R. F. Cook: ‘Orientation, stress, and strain in an (001) barium titanate single crystal with 90° lamellar domains determined using electron backscatter diffraction’, J. Mater. Sci., 2013, 49, 2213–2224. doi: 10.1007/s10853-013-7915-3
  • D. A. Long: ‘The raman effect’; 2002, Chichester, John Wiley & Sons.
  • R. L. McCreery: ‘Raman spectroscopy for chemical analysis’; 2005, New York, John Wiley & Sons.
  • J. Kreisel, A. M. Glazer, G. Jones, P. A. Thomas, L. Abello and G. Lucazeau: ‘An x-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: the (Na1-xKx)0.5Bi0.5TiO3 (0 < x < 1) solid solution’, J. Phys. Condens. Matter, 2000, 12, 3267–3280. doi: 10.1088/0953-8984/12/14/305
  • E. K. H. Salje: ‘Hard mode Spectroscopy: Experimental studies of structural phase transitions’, Phase Trans., 1992, 37, (2–3), 83–110. doi: 10.1080/01411599208222888
  • J. Petzelt and V. Dvorak: ‘Changes of infrared and Raman spectra induced by structural phase transitions. I. General considerations’, J. Phys. C: Solid State Phys., 1976, 9, 1571–1586. doi: 10.1088/0022-3719/9/8/028
  • H. Taniguchi, M. Itoh and D. Fu: ‘Raman scattering study of the soft mode in Pb(Mg1/3Nb2/3)O3’, J. Raman Spectrosc., 2011, 42, 706–714. doi: 10.1002/jrs.2746
  • E. Buixaderas, I. Gregora, M. Savinov, J. Hlinka, L. Jin, D. Damjanovic and B. Malic: ‘Compositional behavior of Raman-active phonons in Pb(Zr1−xTix)O3 ceramics’, Phys. Rev. B, 2015, 91, 014104-1–014104-9. doi: 10.1103/PhysRevB.91.014104
  • R. Loudon: ‘The Raman effect in crystals’, Adv. Phys., 1964, 13, 423–482. doi: 10.1080/00018736400101051
  • M. Deluca, T. Sakashita, W. Zhu, H. Chazono and G. Pezzotti: ‘Stress dependence of the polarized Raman spectrum of polycrystalline lead zirconate titanate’, J. Appl. Phys., 2007, 101, 083526-1–083526-11. doi: 10.1063/1.2715542
  • M. Deluca, T. Sakashita and G. Pezzotti: ‘Polarized Raman scattering of domain structures in polycrystalline lead zirconate titanate’, Appl. Phys. Lett., 2007, 90, 051919-1–051919-3. doi: 10.1063/1.2432250
  • K. Mizoguchi and S. Nakashima: ‘Determination of crystallographic orientations in silicon films by Raman-microprobe polarization measurements’, J. Appl. Phys., 1989, 65, 2583–2590. doi: 10.1063/1.342787
  • M. Yoshikawa, H. Ishida, A. Ishitani, S. Koizumi and T. Inuzuka: ‘Study of crystallographic orientations in the diamond film on the (100) surface of cubic boron nitride using a Raman microprobe’, Appl. Phys. Lett., 1991, 58, 1387–1388. doi: 10.1063/1.104316
  • M. Yoshikawa, H. Ishida, A. Ishitani, T. Murakami, S. Koizumi and T. Inuzuka: ‘Study of crystallographic orientations in the diamond film on cubic boron nitride using Raman microprobe’, Appl. Phys. Lett., 1990, 57, 428–430. doi: 10.1063/1.103656
  • D. J. Gardiner and P. R. Graves: ‘Practical Raman spectroscopy’; 1989, Berlin-Heidelberg, Springer.
  • H. Fukumura, H. Harima, K. Kisoda, M. Tamada, Y. Noguchi and M. Miyayama: ‘Raman scattering study of multiferroic BiFeO3 single crystal’, J. Magn. Magn. Mater., 2007, 310, e367–e369. doi: 10.1016/j.jmmm.2006.10.282
  • K. F. McCarty, J. Z. Liu, R. N. Shelton and H. B. Radousky: ‘Raman-active phonons of a twin-free YBa2Cu3O7 crystal: A complete polarization analysis’, Phys. Rev. B, 1990, 41, 8792–8797. doi: 10.1103/PhysRevB.41.8792
  • A. Atkinson, S. C. Jain and S. J. Webb: ‘Convolution of spectra in optical microprobe experiments’, Semicond. Sci. Technol., 1999, 14, 561–564. doi: 10.1088/0268-1242/14/6/312
  • A. Atkinson and S. C. Jain: ‘Spatially resolved stress analysis using Raman spectroscopy’, J. Raman Spectrosc., 1999, 30, 885–891. doi: 10.1002/(SICI)1097-4555(199910)30:10<885::AID-JRS485>3.0.CO;2-5
  • R. Ossikovski, Q. Nguyen, G. Picardi, J. Schreiber and P. Morin: ‘Theory and experiment of large numerical aperture objective Raman microscopy: Application to the stress-tensor determination in strained cubic materials’, J. Raman Spectrosc., 2008, 39, 661–672. doi: 10.1002/jrs.1911
  • M. Nakajima, T. Fujisawa, Y. Ehara, T. Yamada, H. Funakubo, H. Naganuma, S. Okamura, K. Nishida, T. Yamamoto and M. Osada: ‘Single crystal-like selection rules for unipolar-axis oriented tetragonal Pb(Zr, Ti)O3 thick epitaxial films’, Appl. Phys. Lett., 2010, 97, 111901-1–111901-3.
  • M. Asif Rafiq, P. Supancic, M. Elisabete Costa, P. M. Vilarinho and M. Deluca: ‘Precise determination of phonon constants in lead-free monoclinic (K0.5Na0.5)NbO3 single crystals’, Appl. Phys. Lett., 2014, 104, 011902-1–011902-5. doi: 10.1063/1.4860416
  • J. C. González, N. Mestres, T. Puig, J. Gázquez, F. Sandiumenge, X. Obradors, A. Usoskin, C. Jooss, H. C. Freyhardt and R. Feenstra: ‘Biaxial texture analysis of YBa2Cu3O7-coated conductors by micro-Raman spectroscopy’, Phys. Rev. B, 2004, 70, 094525-1–094525-8.
  • M. Deluca, M. Higashino and G. Pezzotti: ‘Raman tensor elements for tetragonal BaTiO3 and their use for in-plane domain texture assessments’, Appl. Phys. Lett., 2007, 91, 091906-1–091906-3. doi: 10.1063/1.2776357
  • M. Tanaka and R. J. Young: ‘Molecular orientation distributions in uniaxially oriented poly( l-lactic acid) films determined by polarized Raman spectroscopy’, Macromolecules, 2006, 39, 3312–3321. doi: 10.1021/ma0526286
  • K. Okai, W. Zhu and G. Pezzotti: ‘Domain structures in multilayer ceramic capacitors studied by polarized Raman spectroscopy’, Phys. Status Solidi (a), 2011, 208, 1132–1140. doi: 10.1002/pssa.201000108
  • R. L. McGreevy and L. Pusztai: ‘Reverse Monte Carlo simulation: A new technique for the determination of disordered structures’, Mol. Simul., 1988, 1, 359–367. doi: 10.1080/08927028808080958
  • R. L. McGreevy: ‘Reverse Monte Carlo modelling’, J. Phys. Condens. Matter, 2001, 13, R877–R913. doi: 10.1088/0953-8984/13/46/201
  • R. Bermejo, H. Grünbichler, J. Kreith and C. Auer: ‘Fracture resistance of a doped PZT ceramic for multilayer piezoelectric actuators: Effect of mechanical load and temperature’, J. Eur. Ceram. Soc., 2010, 30, 705–712. doi: 10.1016/j.jeurceramsoc.2009.08.013
  • M. Algueró, A. J. Bushby, M. J. Reece and A. Seifert: ‘Anelastic deformation of Pb(Zr, Ti)O3 thin films by non-180° ferroelectric domain wall movements during nanoindentation’, Appl. Phys. Lett., 2002, 81, 421–423. doi: 10.1063/1.1491291
  • Y.-B. Park, M. J. Dicken, Z.-H. Xu and X. Li: ‘Nanoindentation of the a and c domains in a tetragonal BaTiO3 single crystal’, J. Appl. Phys., 2007, 102, 083507-1–083507-6.
  • M. Stefenelli, J. Todt, A. Riedl, W. Ecker, T. Müller, R. Daniel, M. Burghammer and J. Keckes: ‘X-ray analysis of residual stress gradients in TiN coatings by a Laplace space approach and cross-sectional nanodiffraction: a critical comparison’, J. Appl. Crystallogr., 2013, 46, 1378–1385. doi: 10.1107/S0021889813019535
  • N. Tamura, A. A. MacDowell, R. S. Celestre, H. A. Padmore, B. Valek, J. C. Bravman, R. Spolenak, W. L. Brown, T. Marieb, H. Fujimoto, B. W. Batterman and J. R. Patel: ‘High spatial resolution grain orientation and strain mapping in thin films using polychromatic submicron X-ray diffraction’, Appl. Phys. Lett., 2002, 80, 3724–3726. doi: 10.1063/1.1477621
  • P. G. Xu, K. Akita, H. Suzuki, N. Metoki and A. Moriai: ‘Establishment and Optimization of Angle Dispersive Neutron Diffraction Bulk Texture Measurement Environments’, Mater. Trans., 2012, 53, 1831–1836. doi: 10.2320/matertrans.MA201203
  • V. Y. Shur, P. S. Zelenovskiy, M. S. Nebogatikov, D. O. Alikin, M. F. Sarmanova, A. V. Ievlev, E. A. Mingaliev and D. K. Kuznetsov: ‘Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals’, J. Appl. Phys., 2011, 110, 052013-1–052013-6.
  • S. V. Kalinin, B. J. Rodriguez, S. Jesse, J. Shin, A. P. Baddorf, P. Gupta, H. Jain, D. B. Williams and A. Gruverman: 'Vector piezoresponse force microscopy', Microsc. Microanal., 2006, 12, 206–220. doi: 10.1017/S1431927606060156
  • N. Balke, S. Choudhury, S. Jesse, M. Huijben, Y. H. Chu, A. P. Baddorf, L. Q. Chen, R. Ramesh and S. V. Kalinin: ‘Deterministic control of ferroelastic switching in multiferroic materials’, Nat. Nanotechnol., 2009, 4, 868–875. doi: 10.1038/nnano.2009.293
  • B. J. Rodriguez, C. Callahan, S. V. Kalinin and R. Proksch: ‘Dual-frequency resonance-tracking atomic force microscopy’, Nanotechnology, 2007, 18, 475504. doi: 10.1088/0957-4484/18/47/475504
  • A. Morozovska, E. Eliseev, S. Bravina and S. Kalinin: ‘Resolution-function theory in piezoresponse force microscopy: Wall imaging, spectroscopy, and lateral resolution’, Phys. Rev. B, 2007, 75, 174109-1–174109-18. doi: 10.1103/PhysRevB.75.174109
  • E. Soergel: ‘Piezoresponse force microscopy (PFM)’, J. Phys. D. Appl. Phys., 2011, 44, 464003-1–464003-17. doi: 10.1088/0022-3727/44/46/464003
  • S. V. Kalinin, A. N. Morozovska, L. Q. Chen and B. J. Rodriguez: ‘Local polarization dynamics in ferroelectric materials’, Rep. Prog. Phys., 2010, 73, 056502-1–056502-67. doi: 10.1088/0034-4885/73/5/056502