Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 116, 2017 - Issue 4: Cement and Concrete Science
341
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

The reactivity of aluminosilicate glasses in cements – effects of Ca content on dissolution characteristics and surface precipitation

&
Pages 216-224 | Received 08 Apr 2016, Accepted 09 Feb 2017, Published online: 13 Mar 2017

References

  • Tanaka N, Stigson B. Cement technology roadmap 2009: carbon emissions reductions up to 2050. Paris: OECD Publishing; 2009.
  • Tanaka N. Energy technology perspectives: scenarios & strategies to 2050. Int Energy Agency Publ. 2010. p. 1–710. Available from: http://www.oecd-ilibrary.org.ezproxy.library.uq.edu.au/energy/energy-technology-perspectives-2010_energy_tech-2010-en.
  • Li C, Sun H, Li L. A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cem Concr Res. 2010;40:1341–1349. doi: 10.1016/j.cemconres.2010.03.020
  • Dubovoy VS, Gebler SH, Klieger P, et al. Effects of ground granulated blast-furnace slags on some properties of pastes, mortars, and concretes. ASTM Spec Tech Publ. STP897; 1986. p. 29–48. Available from: http://www.astm.org/DIGITAL_LIBRARY/STP/PAGES/STP36390S.htm.
  • Pal SC, Mukherjee A, Pathak SR. Investigation of hydraulic activity of ground granulated blast furnace slag in concrete. Cem Concr Res. 2003;33:1481–1486. doi: 10.1016/S0008-8846(03)00062-0
  • Taylor HFW. Cement chemistry. 2nd ed. London: Thomas Telford Publishing; 1997.
  • Snellings R, Mertens G, Elsen J. Supplementary cementitious materials. Rev Miner Geochem. 2012;74:211–278. doi: 10.2138/rmg.2012.74.6
  • Lothenbach B, Scrivener K, Hooton RD. Supplementary cementitious materials. Cem Concr Res. 2011;41:1244–1256. doi: 10.1016/j.cemconres.2010.12.001
  • Kocaba V, Gallucci E, Scrivener KL. Methods for determination of degree of reaction of slag in blended cement pastes. Cem Concr Res. 2012;42:511–525. doi: 10.1016/j.cemconres.2011.11.010
  • Berodier E, Scrivener K. Understanding the filler effect on the nucleation and growth of C-S-H. J Am Ceram Soc. 2014;10:1–10.
  • Novatski A, Steimacher A, Medina AN, et al. Relations among nonbridging oxygen, optical properties, optical basicity, and color center formation in CaO-MgO aluminosilicate glasses. J Appl Phys. 2008;104. doi: 10.1063/1.3010306
  • Shelby JE. Introduction to glass science and technology. 2nd ed. Cambridge: The Royal Society of Chemistry; 2005.
  • Moesgaard M, Herfort D, Yue Y. Calcium aluminosilicate glasses as supplementary cementitious materials. Glass Sci Technol. 2010;51:183–190.
  • Neuville DR, Cormier L, Montouillout V, et al. Local Al site distribution in aluminosilicate glasses by 27Al MQMAS NMR. J Non Cryst Solids. 2007;353:180–184. doi: 10.1016/j.jnoncrysol.2006.09.035
  • Hamilton J. Dissolution of nepheline, jadeite and albite glasses: toward better models for aluminosilicate dissolution. Geochim Cosmochim Acta. 2001;65:3683–3702. doi: 10.1016/S0016-7037(01)00724-4
  • Gartner EM, Macphee DE. A physico-chemical basis for novel cementitious binders. Cem Concr Res. 2011;41:736–749. doi: 10.1016/j.cemconres.2011.03.006
  • Brantley SL, Kubicki JD, White AF. Kinetics of water-rock interaction. New York: Springer Science & Business Media; 2008.
  • Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A. 1976;32:751–767. doi: 10.1107/S0567739476001551
  • Depasse J, Watillon a. The stability of amorphous colloidal silica. J Colloid Interface Sci. 1970;33:430–438. doi: 10.1016/0021-9797(70)90235-3
  • Xu H, Van Deventer JSJ. The geopolymerisation of alumino-silicate minerals. Int J Miner Process. 2000;59:247–266. doi: 10.1016/S0301-7516(99)00074-5
  • Hellmann R. The albite-water system : part II. The time-evolution of the stoichiometry of dissolution as a function of pH at 100, 200, and 300°C. Geochim Cosmochim Acta. 1995;59:1669–1697. doi: 10.1016/0016-7037(95)00075-B
  • Mercado-Depierre S, Angeli F, Frizon F, et al. Antagonist effects of calcium on borosilicate glass alteration. J Nucl Mater. 2013;441:402–410. doi: 10.1016/j.jnucmat.2013.06.023
  • Dohmen L, Lenting C, Fonseca ROC, et al. Pattern formation in silicate glass corrosion zones. Int J Appl Glass Sci. 2013;4:357–370. doi: 10.1111/ijag.12046
  • Chave T, Frugier P, Gin S, et al. Glass-water interphase reactivity with calcium rich solutions. Geochim Cosmochim Acta. 2011;75:4125–4139. doi: 10.1016/j.gca.2011.05.005
  • Dent Glasser LS, Kataoka N. On the role of calcium in the alkali-aggregate reaction. Cem Concr Res. 1982;12:321–331. doi: 10.1016/0008-8846(82)90080-1
  • Perrin DD. Dissociation contents of inorganic acids and bases in aqueous solution. Pure Appl Chem. 1969;20:133–236. doi: 10.1351/pac196920020133
  • Tanuma S, Powell CJ, Penn DR. Calculations of electron inelastic mean free paths. IX. Data for 41 elemental solids over the 50 V to 30 keV range. Surf Interface Anal. 2011;43:689–713. doi: 10.1002/sia.3522
  • Watts JF, Wolstenholme J. An introduction to surface analysis by XPS and AES. Chichester: John Wiley & Sons, Inc.; 2003.
  • Frugier P, Gin S, Minet Y, et al. SON68 nuclear glass dissolution kinetics: current state of knowledge and basis of the new GRAAL model. J Nucl Mater. 2008;380:8–21. doi: 10.1016/j.jnucmat.2008.06.044
  • Snellings R. Surface chemistry of calcium aluminosilicate glasses. J Am Ceram Soc. 2015;98:303–314. doi: 10.1111/jace.13263
  • Hench LL, Clark DE. Physical chemistry of glass surfaces. J Non Cryst Solids. 1978;28:83–105. doi: 10.1016/0022-3093(78)90077-7
  • Newlands KC, Macphee DE. The early stage dissolution characteristics of aluminosilicate glasses and their implications for SCM reactivity in cement systems, Weimar, 2015.
  • Utton CA, Hand RJ, Hyatt NC, et al. Formation of alteration products during dissolution of vitrified ILW in a high-pH calcium-rich solution. J Nucl Mater. 2013;442:33–45. doi: 10.1016/j.jnucmat.2013.08.026
  • Riding K, Silva DA, Scrivener K. Early age strength enhancement of blended cement systems by CaCl2 and diethanol-isopropanolamine. Cem Concr Res. 2010;40:935–946. doi: 10.1016/j.cemconres.2010.01.008
  • Van Iseghem P, Aertsens M, Gin S, et al. A critical evaluation of the dissolution mechanisms of high-level waste glasses in conditions of relevance for geological disposal (GLAMOR), 2007. DOI:EUR 23097.
  • Oelkers EH. General kinetic description of multioxide silicate mineral and glass dissolution. Geochim Cosmochim Acta. 2001;65:3703–3719. doi: 10.1016/S0016-7037(01)00710-4
  • Crovisier JL, Advocat T, Dussossoy JL. Nature and role of natural alteration gels formed on the surface of ancient volcanic glasses (Natural analogs of waste containment glasses). J Nucl Mater. 2003;321:91–109. doi: 10.1016/S0022-3115(03)00206-X
  • Libourel G, Verney-Carron A, Morlok A, et al. The use of natural and archeological analogues for understanding the long-term behavior of nuclear glasses. Comptes Rendus Geosci. 2011;343:237–245. doi: 10.1016/j.crte.2010.12.004
  • Bunker BC. Molecular mechanisms for corrosion of silica and silicate glasses. J Non Cryst Solids. 1994;179:300–308. doi: 10.1016/0022-3093(94)90708-0
  • Tournie A, Ricciardi P, Colomban P. Glass corrosion mechanisms: a multiscale analysis. Solid State Ionics. 2008;179:2142–2154. doi: 10.1016/j.ssi.2008.07.019
  • Ruiz-Agudo E, Putnis CV, Rodriguez-Navarro C, et al. Mechanism of leached layer formation during chemical weathering of silicate minerals. Geology. 2012;40:947–950. doi: 10.1130/G33339.1
  • Putnis CV, Tsukamoto K, Nishimura Y. Direct observations of pseudomorphism: Compositional and textural evolution at a fluid-solid interface. Am Mineral. 2005;90:1909–1912. doi: 10.2138/am.2005.1990
  • Geisler T, Janssen A, Scheiter D, et al. Aqueous corrosion of borosilicate glass under acidic conditions: a new corrosion mechanism. J Non Cryst Solids. 2010;356:1458–1465. doi: 10.1016/j.jnoncrysol.2010.04.033
  • Hellmann R, Penisson JM, Hervig RL, et al. An EFTEM/HRTEM high-resolution study of the near surface of labradorite feldspar altered at acid pH: evidence for interfacial dissolution-reprecipitation. Phys Chem Miner. 2003;30:192–197. doi: 10.1007/s00269-003-0308-4
  • Putnis A. Mineral replacement reactions. Rev Mineral Geochem. 2009;70:87–124. doi: 10.2138/rmg.2009.70.3
  • Luke K, Glasser FP. Selective dissolution of hydrated blast furnace slag cements. Cem Concr Res. 1987;17:273–282. doi: 10.1016/0008-8846(87)90110-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.