Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 117, 2018 - Issue 3
217
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Preparation and characterisation of closed-pore Al2O3-MgAl2O4 refractory aggregate utilising superplasticity

, , , , &
Pages 182-188 | Received 19 Jun 2016, Accepted 23 Oct 2017, Published online: 28 Nov 2017

References

  • Mergen A. Production of sintered high alumina refractories from Turkish bauxite ore. Br Ceram Trans. 2004;103(1):42–46.
  • Zawrah MF, Khalil NM. High alumina castables reinforced with SiC. Adv Appl Ceram. 2005;104(6):312–317.
  • Berjonneau J, Prigent P, Poirier J. The development of a thermodynamic model for Al2O3–MgO refractory castable corrosion by secondary metallurgy steel ladle slags. Ceram Int. 2009;35(2):623–635.
  • Wei Y, Jiang Y, Li N, et al. Analysis on microcrystalline graphite and properties of MgO–C refractories with microcrystalline graphite. Adv Appl Ceram. 2015;114(8):423–428.
  • Souza TM, Luz AP, Brito MAM, et al. In situ elastic modulus evaluation of Al2O3–MgO refractory castables. Ceram Int. 2014;40(1):1699–1707.
  • Chen SK, Cheng MY, Lin SJ, et al. Thermal characteristics of Al2O3–MgO and Al2O3–spinel castables for steel ladles. Ceram Int. 2002;28(7):811–817.
  • Li N, Han BQ. Chinese research into utilisation of coal waste in ceramics, refractories and cements. Adv Appl Ceram. 2006;105(1):64–68.
  • Yan W, Chen J, Li N, et al. Preparation and characterization of porous MgO–Al2O3 refractory aggregates using an in–situ decomposition pore-forming technique. Ceram Int. 2015;41(1):515–520.
  • Zou Y, Huang A, Gu H, et al. Effects of particle distribution of matrix on microstructure and slag resistance of lightweight Al2O3–MgO castables. Ceram Int. 2016;42(1):1964–1972.
  • Gregorová E, Pabst W. Porous ceramics prepared using poppy seed as a pore-forming agent. Ceram Int. 2007;33(7):1385–1388.
  • Bai J, Wei C, Meng F, et al. Fabrication of porous Al2O3–MgAl2O4 ceramics using combustion-synthesized powders containing in situ produced pore-forming agents. Mater Lett. 2011;65(11):1559–1561.
  • Xu N, Li S, Li Y, et al. Preparation and properties of porous ceramic aggregates using electrical insulators waste. Ceram Int. 2015;41(4):5807–5811.
  • Li S, Wang C, Zhou J. Effect of starch addition on microstructure and properties of highly porous alumina ceramics. Ceram Int. 2013;39(8):8833–8839.
  • Yan W, Li N, Han B., et al. Preparation and characterization of porous ceramics prepared from kaolinite gangue and Al(OH)3 with double addition of MgCO3 and CaCO3. Int J Miner Metall Mater. 2011;18(4):450–454.
  • Yan W, Luo H, Tong J, et al. Effects of sintering temperature on pore characterization and strength of porous cordierite-mullite ceramics by a pore-forming in situ technique. Int J Mater Res. 2012;103(10):1239–1243.
  • Li S, Li N. Effects of composition and temperature on porosity and pore size distribution of porous ceramics prepared from Al(OH)3 and kaolinite gangue. Ceram Int. 2007;33(4):551–556.
  • Salomão R, Bôas MV, Pandolfelli VC. Porous alumina-spinel ceramics for high temperature applications. Ceram Int. 2011;37(4):1393–1399.
  • Deng Z, Fukasawa T, Ando M. Microstructure and mechanical properties of porous alumina ceramics fabricated by the decomposition of hydroxide. J Am Ceram Soc. 2001;84(11):2638–2644.
  • She J, Ohji T. Fabrication and characterization of highly porous mullite ceramics. Mater Chem Phys. 2003;80(3):610–614.
  • She J, Yang J, Jayaseelan DD, et al. Thermal shock behavior of isotropic and anisotropic porous silicon nitride. J Am Ceram Soc. 2003;86(4):738–740.
  • Fu L, Gu H, Huang A, et al. Effect of MgO micropowder on sintering properties and microstructures of microporous corundum aggregates. Ceram Int. 2015;41(4):5857–5862.
  • Fu L, Gu H, Huang A, et al. Possible improvements of alumina-magnesia castable by lightweight microporous aggregates. Ceram Int. 2015;41(4):1263–1270.
  • Boniecki M, Kalinski D, Librant Z, et al. Superplastic joining of alumina and zirconia ceramics. J Europ Ceram Soc. 2007;27(2):1351–1355.
  • Pastor JY, Martín A, Molina–Aldareguía JM, et al. Superplastic deformation of directionally solidified nanofibrillar Al2O3–Y3Al5O12–ZrO2 eutectics. J Europ Ceram Soc. 2013;33(13–14):2579–2586.
  • Obata M, Hayashi H, Kishimoto A. Alumina-based monofoams utilizing superplastic deformation facilitated by the addition of magnesia or magnesium aluminate spinel. J Alloy Compd. 2009;471(1–2):L32–L35.
  • Yamaoka H, Hayashi H, Kishimoto A. Applicability of nitride powders as foaming agents in superplastically foamed ceramics. J Ceram Soc Jpn. 2009;117(11):1233–1235.
  • Kishimoto A, Obata M, Asaoka H, et al. Fabrication of alumina-based ceramic foams utilizing superplasticity. J Europ Ceram Soc. 2007;27(1):41–45.
  • Kim BN, Hiraga K, Morita K, et al. Superplasticity in alumina enhanced by co-dispersion of 10% zirconia and 10% spinel particles. Acta Mater. 2001;49(5):887–895.
  • Narushima T, Goto T, Iguchi Y, et al. High-temperature active oxidation of chemically vapor-deposited silicon carbide in an Ar–O2 atmosphere. J Am Ceram Soc. 1991;74(10):2583–2586.
  • Mazzoni AD, Conconi MS, Aglietti EF. Phase stability and microstructure of MgAl2O4/SiC composites sintered in argon atmosphere. Ceram Int. 2000;26(2):147–151.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.