Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 117, 2018 - Issue 5
167
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

A case study of the effect of Ni substitution on the sintering behaviours of Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen transport membranes

, , , , , & show all
Pages 269-278 | Received 20 Jun 2017, Accepted 26 Nov 2017, Published online: 04 Jan 2018

References

  • Sunarso J, Baumann S, Serra J, et al. Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J Memb Sci. 2008;320:13–41. doi: 10.1016/j.memsci.2008.03.074
  • Tan L, Gu X, Yang L, et al. Influence of sintering condition on crystal structure, microstructure, and oxygen permeability of perovskite-related type Ba0.8Sr0.2Co0.8Fe0.2O3−δ membranes. Sep Purif Technol. 2003;32:307–312. doi: 10.1016/S1383-5866(03)00047-9
  • Shao Z, Haile SM. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature. 2004;431:170–173. doi: 10.1038/nature02863
  • Shao Z, Yang W, Cong Y, et al. Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen membrane. J Memb Sci. 2000;172:177–188. doi: 10.1016/S0376-7388(00)00337-9
  • McIntosh S, Vente JF, Haije WG, et al. Oxygen stoichiometry and chemical expansion of Ba0.5Sr0.5Co0.8Fe0.2O3-δ measured by in situ neutron diffraction. Chem Mater. 2006;18:2187–2193. doi: 10.1021/cm052763x
  • Yi J, Lein H, Grande T, et al. High-temperature compressive creep behaviour of the perovskite-type oxide Ba0.5Sr0.5Co0.8Fe0.2O3-δ. Solid State Ionics. 2009;180:1564–1568. doi: 10.1016/j.ssi.2009.09.014
  • Arnold M, Wang H, Feldhoff A. Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ membranes. J Memb Sci. 2007;293:44–52. doi: 10.1016/j.memsci.2007.01.032
  • Efimov K, Xu Q, Feldhoff A. Transmission electron microscopy study of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite decomposition at intermediate temperatures. Chem Mater. 2010;22:5866–5875. doi: 10.1021/cm101745v
  • Huang B, Malzbender J, Steinbrech R, et al. Anomalies in the thermomechanical behavior of Ba0.5Sr0.5Co0.8Fe0.2O3-δ ceramic oxygen conductive membranes at intermediate temperatures. Appl Phys Lett. 2009;95:051901. doi: 10.1063/1.3193657
  • Yang J, Zhao H, Liu X, et al. Bismuth doping effects on the structure, electrical conductivity and oxygen permeability of Ba0.6Sr0.4Co0.7Fe0.3O3-δ ceramic membranes. Int J Hydrogen Energy. 2012;37:e12699.
  • Li Z, Wei B, Lü Z, et al. Evaluation of (Ba0.5Sr0.5)0.85Gd0.15Co0.8Fe0.2O3−δ cathode for intermediate temperature solid oxide fuel cell. Ceram Int. 2012;38:3039–3046. doi: 10.1016/j.ceramint.2011.12.001
  • Haworth P, Smart S, Glasscock J, et al. High performance yttrium-doped BSCF hollow fibre membranes. Sep Purif Technol. 2012;94:16–22. doi: 10.1016/j.seppur.2012.04.005
  • Ravkina O, Klande T, Feldhoff A. Investigation of Zr-doped BSCF perovskite membrane for oxygen separation in the intermediate temperature range. J Solid State Chem. 2013;201:101–106. doi: 10.1016/j.jssc.2013.02.023
  • Pećanac G, Kiesel L, Kriegel R, et al. Comparison of thermo-mechanical characteristics of non-doped and 3mol% B-site Zr-doped Ba0.5Sr0.5Co0.8Fe0.2O3-δ. Ceram Int. 2014;40:1843–1850. doi: 10.1016/j.ceramint.2013.07.086
  • Kang BK, Lee HC, Heo YW, et al. Thermal expansion behavior of La-doped Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathode material. Ceram Int. 2013;39:8267–8271. doi: 10.1016/j.ceramint.2013.04.012
  • Kharton V, Viskup A, Naumovich E, et al. Oxygen permeability of LaFe1−xNixO3−δ solid solutions. Mater Res Bull. 1999;34:1311–1317. doi: 10.1016/S0025-5408(99)00117-8
  • Wei B, Lü Z, Jia D, et al. Thermal expansion and electrochemical properties of Ni-doped GdBaCo2O5+δ double-perovskite type oxides. Int J Hydrogen Energy. 2010;35:3775–3782. doi: 10.1016/j.ijhydene.2010.01.079
  • Wang L, Dou R, Li Y, et al. Microstructure and mechanical properties of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite-structured oxides doped with different contents of Ni. Mater Sci Eng: A. 2016;658:280–288. doi: 10.1016/j.msea.2016.02.008
  • Zhang K, Yang Y, Ponnusamy D, et al. Effect of microstructure on oxygen permeation in SrCo0.8Fe0.2O3−δ. J Mater Sci. 1999;34:1367–1372. doi: 10.1023/A:1004518719410
  • Martynczuk J, Arnold M, Feldhoff A. Influence of grain size on the oxygen permeation performance of perovskite-type (Ba0.5Sr0.5)(Fe0.8Zn0.2)O3−δ membranes. J Memb Sci. 2008;322:375–382. doi: 10.1016/j.memsci.2008.05.064
  • Wang H, Tablet C, Feldhoff A, et al. Investigation of phase structure, sintering, and permeability of perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3-δ membranes. J Memb Sci. 2005;262:20–26. doi: 10.1016/j.memsci.2005.03.046
  • Salehi M, Clemens F, Pfaff EM, et al. A case study of the effect of grain size on the oxygen permeation flux of BSCF disk-shaped membrane fabricated by thermoplastic processing. J Memb Sci. 2011;382:186–193. doi: 10.1016/j.memsci.2011.08.007
  • Baumann S, Schulze-Küppers F, Roitsch S, et al. Influence of sintering conditions on microstructure and oxygen permeation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) oxygen transport membranes. J Memb Sci. 2010;359:102–109. doi: 10.1016/j.memsci.2010.02.002
  • Klande T, Ravkina O, Feldhoff A. Effect of microstructure on oxygen permeation of Ba0.5Sr0.5Co0.8Fe0.2O3-δ and SrCo0.8Fe0.2O3−δ membranes. J Eur Ceram Soc. 2013;33:1129–1136. doi: 10.1016/j.jeurceramsoc.2012.11.023
  • Mn B, Peña-Martínez J, Chater RJ, et al. Anisotropic oxygen ion diffusion in layered PrBaCo2O5+δ. Chem Mater. 2012;24:613–621. doi: 10.1021/cm203502s
  • Norman CJ. Synthesis and characterisation of barium strontium cobalt iron oxide mixed ionic and electronic conductors [PhD thesis]. Manchester: University of Manchester; 2013.
  • Wang L, Dou R, Bai M, et al. Characterisation of microstructure and hardness of perovskite-structured Ba0.5Sr0.5Co0.8Fe0.2O3−δ under different sintering conditions. J Eur Ceram Soc. 2016;36:1659–1667. doi: 10.1016/j.jeurceramsoc.2016.02.010
  • ISO/FDIS. 14577-1 Metallic materials – instrumented indentation test for hardness and materials parameters ISO central secretariat, Rue de Varembé 1, 1211 Geneva, Switzerland. 2002.
  • Koster H, Mertins F. Powder diffraction of the cubic perovskite Ba0.5Sr0.5Co0.8Fe0.2O3−δ. Powder Diffr. 2003;18:56–59. doi: 10.1154/1.1536927
  • Shao Z, Xiong G, Dong H, et al. Synthesis, oxygen permeation study and membrane performance of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen-permeable dense ceramic reactor for partial oxidation of methane to syngas. Sep Purif Technol. 2001;25:97–116. doi: 10.1016/S1383-5866(01)00095-8
  • Wei B, Lü Z, Li S, et al. Thermal and electrical properties of new cathode material Ba0.5Sr0.5Co0.8Fe0.2O3-δ for solid oxide fuel cells. Electrochem Solid-State Lett. 2005;8:A428–AA31. doi: 10.1149/1.1951232
  • Kingery W, Bowen H, Uhlmann D. Introduction to ceramics. New York (NY): John Willey & Sons; 1976.
  • Yang J, Zhao H, Liu X, et al. Bismuth doping effects on the structure, electrical conductivity and oxygen permeability of Ba0.6Sr0.4Co0.7Fe0.3O3− δ ceramic membranes. Int J Hydrogen Energy. 2012;37:12694–12699. doi: 10.1016/j.ijhydene.2012.06.013
  • Haworth P, Smart S, Glasscock J, et al. Yttrium doped BSCF membranes for oxygen separation. Sep Purif Technol. 2011;81:88–93. doi: 10.1016/j.seppur.2011.07.007
  • Stournari V, ten Donkelaar S, Malzbender J, et al. Creep behavior of perovskite-type oxides Ba0.5Sr0.5(Co0.8Fe0.2)1−xZrxO3−δ. J Eur Ceram Soc. 2015;35:1841–1846. doi: 10.1016/j.jeurceramsoc.2015.01.005
  • Yoon JS, Yoon MY, Lee EJ, et al. Influence of Ce0.9Gd0.1O2-δ particles on microstructure and oxygen permeability of Ba0.5Sr0.5Co0.8Fe0.2O3-δ composite membrane. Solid State Ionics. 2010;181:1387–1393. doi: 10.1016/j.ssi.2010.06.056
  • Coble RL. Sintering crystalline solids. I. Intermediate and final state diffusion models. J Appl Phys. 1961;32:787–792. doi: 10.1063/1.1736107
  • Green DJ. An introduction to the mechanical properties of ceramics. Cambridge: Cambridge University Press; 1998.
  • Dutta S, Spriggs R. Grain growth in fully dense ZnO. J Am Ceram Soc. 1970;53:61–62. doi: 10.1111/j.1151-2916.1970.tb12007.x
  • Dutta S, Spriggs R. Densification and grain growth in hot-pressed zinc oxide. Mater Res Bull. 1969;4:797–806. doi: 10.1016/0025-5408(69)90002-6
  • Skinner S, Kilner J. Oxygen diffusion and surface exchange in La2−xSrxNiO4+δ. Solid State Ionics. 2000;135:709–712. doi: 10.1016/S0167-2738(00)00388-X
  • Lein HL, Wiik K, Grande T. Kinetic demixing and decomposition of oxygen permeable membranes. Solid State Ionics. 2006;177:1587–1590. doi: 10.1016/j.ssi.2006.03.001
  • Lindner R, Åkerströ Å. Diffusion of nickel-63 in nickel oxide (NiO). Discuss Faraday Soc. 1957;23:133–136. doi: 10.1039/DF9572300133
  • Lein HL, Wiik K, Ma E, et al. High-temperature creep behavior of mixed conducting La0.5Sr0.5Fe1−xCoxO3-δ (0.5≤x≤1) materials. J Am Ceram Soc. 2006;89:2895–2898. doi: 10.1111/j.1551-2916.2006.01176.x
  • Jud E, Huwiler CB, Gauckler LJ. Sintering analysis of undoped and cobalt oxide doped ceria solid solutions. J Am Ceram Soc. 2005;88:3013–3019. doi: 10.1111/j.1551-2916.2005.00567.x
  • Riege S, Thompson C, Frost H. Simulation of the influence of particles on grain structure evolution in two-dimensional systems and thin films. Acta Mater. 1999;47:1879–1887. doi: 10.1016/S1359-6454(99)00039-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.