Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 117, 2018 - Issue 7
121
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Study of the structural and dielectric properties of ceramic obtained from residual electrocoagulation

, ORCID Icon, , ORCID Icon, &
Pages 395-405 | Received 06 Sep 2017, Accepted 30 Mar 2018, Published online: 19 Apr 2018

References

  • Ribeiro MJ, Abrantes JCC, Ferreira JM, et al. Predicting processing-sintering-related properties of mullite–alumina ceramic bodies based on Al-rich anodising sludge by impedance spectroscopy. J Eur Ceram Soc. 2004;24:3841–3848. doi:10.1016/j.jeurceramsoc.2003.12.026.
  • Mymrin V, Alekseev K, Nagalli A, et al. Red ceramics enhancement by hazardous laundry water cleaning sludge. J Clean Prod. 2016;120:157–163. doi:10.1016/j.jclepro.2015.12.075.
  • Ramesh RK, Chottanahalli SPK, Madegowda NM, et al. Electrochemical synthesis of hierarchal flower-like hierarchical In2O3/ZnO nanocatalyst for textile industry effluent treatment, photo-voltaic, OH scavenging and anti-bacterial studies. Catal Commun. 2017;89:25–28. doi:10.1016/j.catcom.2016.10.006.
  • U.S.P. Uday, T.K. Bandyopadhyay, B. Bhunia, Bioremediation and detoxification technology for treatment of dye(s) from textile effluent. Wastewater Treat., InTech, 2016. doi:10.5772/62309.
  • Guha AK, Ahmed MT, Dey S, et al. Construction of roadway, sanitary latrine ring and septic tank using textile sludge. 2016;6:28–40. doi:10.5923/j.re.20160602.02.
  • Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review. J Environ Manage. 2011;92:407–418. doi:10.1016/j.jenvman.2010.11.011.
  • Khandegar V, Saroha AK. Electrocoagulation for the treatment of textile industry effluent – a review. J Environ Manage. 2013;128:949–963. doi:10.1016/j.jenvman.2013.06.043.
  • Uğurlu M, Gürses A, Doğar Ç, et al. The removal of lignin and phenol from paper mill effluents by electrocoagulation. J Environ Manage. 2008;87:420–428. doi:10.1016/j.jenvman.2007.01.007.
  • Zodi S, Potier O, Lapicque F, et al. Treatment of the industrial wastewaters by electrocoagulation: optimization of coupled electrochemical and sedimentation processes. Desalination. 2010;261:186–190. doi:10.1016/j.desal.2010.04.024.
  • Can OT, Bayramoglu M, Kobya M. Decolorization of reactive Dye solutions by electrocoagulation using aluminum electrodes. Ind Eng Chem Res. 2003;42:3391–3396. doi:10.1021/ie020951g.
  • Adyel T, Rahman S, Khan M, et al. Analysis of heavy metal in electrocoagulated metal hydroxide sludge (EMHS) from the textile industry by energy dispersive X-ray fluorescence (EDXRF). Metals (Basel). 2012;2:478–487. doi:10.3390/met2040478.
  • Adyel TM, Rahman SH, Zaman MM, et al. Reuse feasibility of electrocoagulated metal hydroxide sludge of textile industry in the manufacturing of building blocks. J Waste Manag. 2013;2013:1–9. doi:10.1155/2013/686981.
  • Paiva DVM, Silva MAS, Sombra ASB, et al. Dielectric investigation of the Sr3WO6 double perovskite at RF/microwave frequencies. RSC Adv. 2016;6:42502–42509. doi:10.1039/C6RA04640A.
  • Paiva DVM, Silva MAS, Sombra ASB, et al. Properties of the Sr 3 MoO 6 electroceramic for RF/microwave devices. J. Alloys Compd. 2018;748:766–773. doi:10.1016/j.jallcom.2018.03.200.
  • Oliveira LS, Gouveia DX, Silva MAS, et al. Study of the performance of dielectric resonator antennas based on the matrix composite of Al2O3 – CaTiO3. Microw Opt Technol Lett. 2015;57:963–969. doi:10.1002/mop.28999.
  • Almeida AFL, Fechine PBA, Kretly LC, et al. Batio3 (BTO)-CaCu3Ti4O12 (CCTO) substrates for microwave devices and antennas. J Mater Sci. 2006;41:4623–4631. doi:10.1007/s10853-006-0052-5.
  • Silva PMO, Fernandes TSM, Oliveira RMG, et al. Radiofrequency and microwave properties study of the electroceramic BaBi4Ti4O15. Mater Sci Eng B. 2014;182:37–44. doi:10.1016/j.mseb.2013.11.017.
  • Mirsaneh M, Reaney IM, Han Y, et al. Low sintering temperature high permittivity glass ceramic composites for dielectric loaded microwave antennas. Adv Appl Ceram. 2011;110:387–393. doi:10.1179/1743676111Y.0000000031.
  • R.F.J. Schwenker, Thermal analysis V2: inorganic materials and physical chemistry, Elsevier Science, 2012. https://books.google.com.br/books?id=aUqJhTkkpj8C.
  • Bettinetti G, Novák C, Sorrenti M. Thermal and structural characterization of commercial α-, β-, AND γ-cyclodextrins. J Therm Anal Calorim. 2002;68:517–529. doi:10.1023/A:1016043920156.
  • Duval C. Inorganic thermogravimetric analysis. Elsevier; 1953; https://books.google.com.br/books?id=YDBRAAAAMAAJ.
  • R.M. Cornell, U. Schwertmann, The iron oxides: structure, properties, reactions, occurrences and uses. Wiley, 2003. https://books.google.com.br/books?id=dlMuE3_klW4C.
  • Zhu B, Fang B, Li X. Dehydration reactions and kinetic parameters of gibbsite. Ceram Int. 2010;36:2493–2498. doi:10.1016/j.ceramint.2010.07.007.
  • Ramanathan S, Muraleedharan RV, Roy SK, et al. Dehydration and crystallization kinetics of zirconia-yttria gels. J Am Ceram Soc. 1995;78:429–432. doi:10.1111/j.1151-2916.1995.tb08819.x.
  • Rejitha KS, Ichikawa T, Mathew S. Thermal decomposition studies of [Ni(NH3)6]X2 (X = Cl, Br) in the solid state using TG-MS and TR-XRD. J Therm Anal Calorim. 2011;103:515–523. doi:10.1007/s10973-010-1054-8.
  • Lu C-H, Huang Y-H. Densification and dielectric properties of strontium bismuth tantalate ceramics. Adv Appl Ceram. 2008;107:305–309. doi:10.1179/174367508X306479.
  • Rietveld HM. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 1967;22:151–152. doi:10.1107/S0365110X67000234.
  • Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr. 1969;2:65–71. doi:10.1107/S0021889869006558.
  • Bleicher L, Sasaki JM, Paiva Santos CO. Development of a graphical interface for the Rietveld refinement program DBWS. J Appl Crystallogr. 2000;33:1189–1189. doi:10.1107/S0021889800005410.
  • Pascoal C, Machado R, Pandolfelli VC. Determinação de fase vítrea em bauxitas refratárias. Cerâmica. 2002;48:61–69. doi:10.1590/S0366-69132002000200004.
  • Campos RVB, Bezerra CL, Oliveira LNL, et al. A study of the dielectric properties of Al2O3–TiO2  composite in the microwave and RF regions. J Electron Mater. 2015;44; doi:10.1007/s11664-015-3958-3.
  • Oliveira LNL, Campos RVB, Gouveia DX, et al. Microwave dielectric properties study of (Al2O3)-(Nb2O5) composite for dielectric resonator antenna applications. Microw Opt Technol Lett. 2016;58; doi:10.1002/mop.29816.
  • Rodrigues HO, Sales AJM, Junior GFMP, et al. Experimental and numerical investigation of dielectric resonator antenna based on the BiFeO3 ceramic matrix added with Bi2O3 or PbO. J Alloys Compd. 2013;576:324–331. doi:10.1016/j.jallcom.2013.06.009.
  • Hakki BW, Coleman PD. A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans Microw Theory Tech. 1960;8:402–410. doi:10.1109/TMTT.1960.1124749.
  • Courtney WE. Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Trans Microw Theory Tech. 1970;18:476–485. doi:10.1109/TMTT.1970.1127271.
  • Wang DH, Goh WC, Ning M, et al. Effect of Ba doping on magnetic, ferroelectric, and magnetoelectric properties in mutiferroic BiFeO[sub 3] at room temperature. Appl Phys Lett. 2006;88:212907. doi:10.1063/1.2208266.
  • Rodrigues HO, Pires Junior GFM, Almeida JS, et al. Study of the structural, dielectric and magnetic properties of Bi2O3 and PbO addition on BiFeO3 ceramic matrix. J Phys Chem Solids. 2010;71:1329–1336. doi:10.1016/j.jpcs.2010.05.016.
  • Moulson AJAJ, Herbert JMJM. Electroceramics: materials, properties, applications. 2nd ed., Wiley; 2003; doi:10.1002/0470867965.
  • D. Cruickshank: Microwave materials for wireless applications. Artech House, 2011. http://books.google.com.br/books?id=W5Ylh820OJ8C.
  • Sebastian MT. Dielectric materials for wireless communication. Oxford: Elsevier Science; 2010; doi:10.1016/B978-0-08-045330-9.00006-6.
  • Oliveira RGM, Romeu MC, Costa MM, et al. Impedance spectroscopy study of Na2Nb4O11 ceramic matrix by the addition of Bi2O3. J. Alloys Compd. 2014;584:295–302. doi:10.1016/j.jallcom.2013.08.208.
  • Dube DC, Zurmuhlen R, Bell A, et al. Dielectric measurements on high-Q ceramics in the microwave region. J Am Ceram Soc. 2005;80:1095–1100. doi:10.1111/j.1151-2916.1997.tb02951.x.
  • Chen LF, Ong CK, Neo CP, et al. Microwave electronics: measurement and materials characterization. Chichester: Wiley; 2004.
  • Luk KM, Leung KW. Dielectric resonator antennas. Hertfordshire: Research Studies Press; 2003.
  • Petosa A. Dielectric resonator antenna handbook. Norwood: Artech House; 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.