Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 117, 2018 - Issue sup1: UHTC IV
1,548
Views
18
CrossRef citations to date
0
Altmetric
Articles

Recent advances in the study of high-temperature behaviour of non-stoichiometric TaCx, HfCx and ZrCx carbides in the domain of their congruent melting point

, , , ORCID Icon &
Pages s48-s55 | Received 30 Nov 2017, Accepted 02 Aug 2018, Published online: 19 Nov 2018

References

  • Rudy E. Ternary phase equilibria in transition metal-boron-carbon-silicon systems. Part II. Ternary systems. Wright-Patterson Air Force Base: Air Force Materials Laboratory; 1965. (Vol. I. Ta-Hf-C system. 84 p).
  • Andrievskii RA, Strel'nikova NS, Poltoratskii NI, et al. Melting point in systems ZrC-HfC, TaC-ZrC, TaC-HfC. Poroshk Metall. 1967;49(1):85–88.
  • Pirani M, Alterthum H. Method for the determination of the melting point of metals which fuse at high temperatures. Zeitschrift Fuer Elektrochemie und Angewandte Physikalische Chemie. 1923;29:5–8.
  • Manara D, Ronchi C, Sheindlin M, et al. Melting of stoichiometric and hyperstoichiometric uranium dioxide. J Nucl Mater. 2005;342(1-3):148–163. doi: 10.1016/j.jnucmat.2005.04.002
  • Jackson HF, Jayaseelan DD, Manara D, et al. Laser melting of zirconium carbide: determination of phase transitions in refractory ceramic systems. J Amer Ceram Soc. 2011;94(10):3561–3569. doi: 10.1111/j.1551-2916.2011.04560.x
  • Fernfindez Guillermet A. Analysis of thermochemical properties and phase stability in the zirconium-carbon system. J Alloy Compound. 1995;217:69–89. doi: 10.1016/0925-8388(94)01310-E
  • Cedillos-Barraza O, Manara D, Boboridis K, et al. Investigating the highest melting temperature materials: a laser melting study of the TaC-HfC system. Sci Rep. 2016;6. Article number: 37962. doi: 10.1038/srep37962
  • Brykin MV. Enthalpy and numerical simulation of phase transitions in a Zr–C system. High Temp. 2015;53(6):810–816. doi: 10.1134/S0018151X15050065
  • Sheindlin M, Ronchi C, Heinz W. Recent advances in high-speed polychromatic pyrometry. In: Zvizdic D, Bermanec LG, Stasic T, Veliki T, editors. Proceedings of the 9th international symposium on temperature and thermal measurements in industry and science TEMPMEKO; 2004 June 22-25; Dubrovnik, Croatia. p. 545–550.
  • Ronchi C, Sheindlin M. Melting point of MgO. J Appl Phys. 2001;90:3325. doi: 10.1063/1.1398069
  • Stepanov SV, Sheindlin MA. Statistical analysis of measurement results in multiwavelength pyrometry. High Temp. 2017; 55(5):802–807. doi: 10.1134/S0018151X17040204
  • Riethof T, Acchione BD, Branyan ER. High-Temperature spectral emissivity studies on some refractory metals and carbides. In: Dahl AI, editor. Temperature, its measurement and control in science and industry. Vol. 3, New York: Reinhold Publishing; 1962. p. 515–522.
  • Zapadaeva TE, Petrov VA, Sokolov VV. Emissivity of stoichiometric zirconium and titanium carbides at high-temperatures. High Temp. 1981;19(2):313.
  • Gurvich LV, Iorish VS, Chekhovskoi DV, et al. NIST Special Database 5, “IVTANTHERMO”. CRC, Boca Raton, FL 1993.
  • Martinez JM, Madjid AH. Spectral emissivity of tantalum in the red and in the green, and the change in emissivity resulting from a change in surface structure induced by heat treatment. JAppl Phys. 1970;41(13):5322–5326. doi: 10.1063/1.1658670
  • Khlevnoy BB, Sapritsky VI, Ogarev SA, et al. Development of fixed points above 2700K based on MC and MC-C eutectics at VNIIOFI for radiation thermometry and radiometry. In: Zvizdic D, Bermanec LG, Stasic T, Veliki T, editors. Proceedings of the 9th international symposium on temperature and thermal measurements in industry and science TEMPMEKO; 2004 June 22-25; Dubrovnik, Croatia. p. 203–208.
  • Okamoto H. C-Zr (carbon-zirconium). In: Massalski TB, editor. Binary alloy phase diagrams, 2nd ed. Materials Park (OH): ASM International; 1990. p. 899–900.