Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 117, 2018 - Issue sup1: UHTC IV
1,400
Views
11
CrossRef citations to date
0
Altmetric
Articles

Phase transformations in oxides above 2000°C: experimental technique development

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages s82-s89 | Received 30 Mar 2018, Accepted 01 Aug 2018, Published online: 19 Nov 2018

References

  • Fahrenholtz WG, Wuchina EJ, Lee WE, et al. Ultra-high temperature ceramics: materials for extreme environment applications. Hooboken (NJ): Wiley; 2014.
  • Ushakov SV, Navrotsky A. Experimental approaches to the thermodynamics of ceramics above 1500°C. J Am Ceram Soc. 2012;95:1463–1482. doi: 10.1111/j.1551-2916.2012.05102.x
  • McGrath JR. Exploding Wire Research 1774–1963. Naval Research Lab memorandum report 1698, accession number AD0633623, Washington, D.C. 1966. http://www.dtic.mil/docs/citations/AD0633623
  • Hupf T, Cagran C, Pottlacher G. Thermophysical properties of 22 pure metals in the solid and liquid state - the pulse-heating data collection. EPJ Web Conf. 2011;15:01018. doi:10.1051/epjconf/20111501018.
  • Kaufman L, Ågren J. Calphad, first and second generation – birth of the materials genome. Scr Mater. 2014;70:3–6. doi:10.1016/j.scriptamat.2012.12.003.
  • Luo AA. Material design and development: from classical thermodynamics to CALPHAD and ICME approaches. Calphad. 2015;50:6–22. doi:10.1016/j.calphad.2015.04.002.
  • Wang C, Zinkevich M, Aldinger F. On the thermodynamic modeling of the Zr-O system. CALPHAD: Comput Coupling Phase Diagrams Thermochem. 2004;28(3):281–292. doi:10.1016/j.calphad.2004.09.002.
  • Kelley KK. Contributions to the data on theoretical metallurgy. V. Heats of fusion of inorganic substances. Bur Mines Bull. 1936;393:166.
  • DeWitt DP, Nutter GD. Theory and practice of radiation thermometry. New York: Wiley; 1988.
  • Hyde EP, Forsythe WE. The visibility of radiation in the red end of the visible spectrum. Astrophys J. 1915;42:285–293. doi:10.1086/142207.
  • Langmuir I. The melting-point of tungsten. Phys Rev. 1915;6(2):138–157. doi: 10.1103/PhysRev.6.138
  • Rasor NS, McClelland JD. Thermal property measurements at very high temperatures. Rev Sci Instrum. 1960;31:595–604. doi:10.1063/1.1931263.
  • Stein A, Rabinowitz P, Kaldor A. inventors; Exxon Research and Engineering Company, assignee. Laser radiometer patent US4417822 (A). 1983.
  • Felice RA, inventor. Temperature determining device and process patent US5772323 (A). 2002.
  • Felice RA. The spectropyrometer - a practical multi-wavelength pyrometer. AIP Conf Proc. 2003;684(2):711–716. doi: 10.1063/1.1627211
  • Lu H, Ip LT, Mackrory A, et al. Particle surface temperature measurements with multicolor band pyrometry. AIChE J. 2009;55(1):243–255. doi:10.1002/aic.11677.
  • Earl DD, Kisner RA, Earl DD, et al. inventors; UT-BATTELLE, LLC; UT-Battelle, LLC, assignee. Emissivity Independent Optical Pyrometer patent US2015124244 (A1). 2017.
  • Benezech G, Berjoan R, Coutures JP, et al. Thermal analytical apparatus for the study of crystalline transformations and phase changes at high temperature. Colloq Int Cent Nat Rech Sci. 1972;205:57–69.
  • Manara D, Sheindlin M, Heinz W, et al. New techniques for high-temperature melting measurements in volatile refractory materials via laser surface heating. Rev Sci Instrum. 2008;79:113901/1–113901/7. doi:10.1063/1.3005994.
  • Jackson HF, Jayaseelan DD, Manara D, et al. Laser melting of zirconium carbide: determination of phase transitions in refractory ceramic systems. J Am Ceram Soc. 2011;94:3561–3569. doi:10.1111/j.1551-2916.2011.04560.x.
  • Winborne DA, Nordine PC, Rosner DE, et al. Aerodynamic levitation technique for containerless high temperature studies on liquid and solid samples. Metall Trans, B. 1976;7:711–713. doi:10.1007/bf02698607.
  • Nordine PC, Atkins RM. Aerodynamic levitation of laser-heated solids in gas jets. Rev Sci Instrum. 1982;53(9):1456–1464. doi:10.1063/1.1137196.
  • Krishnan S, Felten JJ, Rix JE, et al. Levitation apparatus for structural studies of high temperature liquids using synchrotron radiation. Rev Sci Instrum. 1997;68(9):3512–3518. doi:10.1063/1.1148315
  • Kurisuchiyan B, Jiyan PK, Dominiku M, et al. inventors; Sadis Bruker Spectrospin, assignee. Probe for Spectroscopic Measurement of Magnetic Resonance at Super High Temperature patent JPH0210281 (A). 1990.
  • Benmore CJ, Weber JKR. Aerodynamic levitation, supercooled liquids and glass formation. Adv Phys: X. 2017;2(3):717–736. doi:10.1080/23746149.2017.1357498.
  • Hennet L, Cristiglio V, Kozaily J, et al. Aerodynamic levitation and laser heating. Eur Phys J Spec Top. 2011;196(1):151–165. doi:10.1140/epjst/e2011-01425-0.
  • Hennet L, Moritz DH, Weber R, et al. Chapter 10 - high-temperature levitated materials. In: Fernandez-Alonso F, Price DL, editors. Experimental methods in the physical sciences Vol. 49. Amsterdam: Academic Press; 2017. p. 583–636. doi:10.1016/B978-0-12-805324-9.00010-8
  • Nordine PC, Weber JKR, Abadie JG. Properties of high-temperature melts using levitation. Pure Appl Chem. 2000;72(11):2127–2136. doi:10.1351/pac200072112127.
  • Nordine PC, Merkley D, Sickel J, et al. A levitation instrument for containerless study of molten materials. Rev Sci Instrum. 2012;83(12):125107/1–125107/14. doi:10.1063/1.4770125.
  • Telle R, Greffrath F, Prieler R. Direct observation of the liquid miscibility gap in the zirconia-silica system. J Eur Ceram Soc. 2015;35(14):3995–4004. doi:10.1016/j.jeurceramsoc.2015.07.015.
  • Bent HA. The second law: an introduction to classical and statistical thermodynamics. New York: Oxford University Press; 1965.
  • McMurray JW, Hu R, Ushakov SV, et al. Solid-liquid phase equilibria of Fe-Cr-Al alloys and spinels. J Nucl Mater. 2017;492:128–133. doi:10.1016/j.jnucmat.2017.05.016.
  • Ushakov SV, Navrotsky A, Weber RJK, et al. Structure and thermal expansion of YSZ and La2Zr2O7 above 1500°C from neutron diffraction on levitated samples. J Am Ceram Soc. 2015;98(10):3381–3388. doi:10.1111/jace.13767.
  • Caslavsky JL. Principles of the optical differential thermal analysis (ODTA). Thermochim Acta. 1988;134:371–376. doi:10.1016/0040-6031(88)85262-6.
  • Shevchenko AV, Lopato LM. TA method application to the highest refractory oxide systems investigation. Thermochim Acta. 1985;93:537–540. doi: 10.1016/0040-6031(85)85135-2
  • Hlavac J. Melting temperatures of refractory oxides: part I. Pure Appl Chem. 1982;54:681–688. doi:10.1351/pac198254030681.
  • Kapush D, Ushakov S, Navrotsky A, et al. A combined experimental and theoretical study of enthalpy of phase transition and fusion of yttria above 2000°C using “drop-n-catch” calorimetry and first-principles calculation. Acta Mater. 2017;124:204–209. doi: 10.1016/j.actamat.2016.11.003
  • Ushakov SV, Shvarev A, Alexeev T, et al. Drop-and-catch (DnC) calorimetry using aerodynamic levitation and laser heating. J Am Ceram Soc. 2017;100(2):754–760. doi: 10.1111/jace.14594
  • Hong Q-J, Ushakov SV, Kapush D, et al. Combined computational and experimental investigation of high temperature thermodynamics and structure of cubic ZrO2 and HfO2. Sci Rep., submitted, 2018.
  • Ushakov SV, Navrotsky A. Direct measurements of fusion and phase transition enthalpies in lanthanum oxide. J Mater Res. 2011;26:845–847. doi:10.1557/jmr.2010.79.
  • Navrotsky A, Ushakov SV. Hot matters - experimental methods for high-temperature property measurement. Am Ceram Soc Bull. 2017;96(2):22–28.
  • Fyhrie M, Hong Q-J, Kapush D, et al. Energetics of melting of Yb2O3 and Lu2O3 from Drop and Catch Calorimetry and First Principles Computations, J Chem Thermo, submitted, 2018.
  • Ushakov SV, Navrotsky A. Direct measurement of fusion enthalpy of LaAlO3 and comparison of energetics of melt, glass, and amorphous thin films. J Am Ceram Soc. 2014;97(5):1589–1594. https://doi.org/10.1111/jace.12785
  • Radha AV, Ushakov SV, Navrotsky A. Thermochemistry of lanthanum zirconate pyrochlore. J Mater Res. 2009;24:3350–3357. doi:10.1557/jmr.2009.0401.
  • Toby BH, Von Dreele RB. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr. 2013;46(2):544–549. doi:10.1107/S0021889813003531.
  • Ushakov SV, Pavlik A, Hong Q-J, et al. in preparation. 2018.
  • Pavlik A, Ushakov SV, Navrotsky A, et al. Structure and thermal expansion of Lu2O3 and Yb2O3 up to the melting points. J Nucl Mater. 2017;495(Suppl. C):385–391. doi:10.1016/j.jnucmat.2017.08.031.
  • Maram PS, Ushakov SV, Weber RJK, et al. In situ diffraction from levitated solids under extreme conditions-structure and thermal expansion in the Eu2O3-ZrO2 system. J Am Ceram Soc. 2015;98(4):1292–1299. doi:10.1111/jace.13422.
  • Maram PS, Ushakov SV, Weber JKR, et al. Probing disorder in pyrochlore oxides using in situ synchrotron diffraction from levitated solids – A thermodynamic perspective. Sci Rep. 2018;8:10658. https://doi.org/10.1038/s41598-018-28877-x