Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 118, 2019 - Issue 4: Boron Rich Solids
1,562
Views
60
CrossRef citations to date
0
Altmetric
Reviews

Progress in pressureless sintering of boron carbide ceramics – a review

ORCID Icon, &
Pages 222-239 | Received 14 Dec 2018, Accepted 22 Jan 2019, Published online: 04 Feb 2019

References

  • Kumazawa T, Kiyoto S, Matsuoka A. 炭化ホウ素セラミックスの常圧焼結 [Pressureless sintering of boron carbide ceramics]. Ceramics. 2014;49(2):122–125. Japanese.
  • Reinmuth K, Lipp A, Knoch H, et al. Borhaltige keramische neutronenabsorberwerkstoffe. J Nucl Mater. 1984;124:175–184.
  • Mashhadi M, Saraf MR, Baghshahi S. Synthesis of boron carbide powder via carbothermic reaction of boron oxide. Int J Eng Sci. 2005;16(1):9–14.
  • Wang LS, Yang YB, Zhang JS, et al. 碳化硼烧结动力学和烧结机制 [Study on the mechanism and kinetic of boron carbide sintering]. J Cent South Univ Technol. 1999;30(5):505–508. Chinese.
  • Kuzenkova MA, Kislyi PS, Grabchuk BL, et al. The structure and properties of sintered boron carbide. J Less-Common Met. 1979;67(1):217–223.
  • Bougoin M, Thevenot F, Dubois J, et al. Synthèse et caracterisation de ceramiques denses en carbure de bore. J Less-Common Met. 1985;114(2):257–271.
  • Schwetz KA, Grellner W. The influence of carbon on the microstructure and mechanical properties of sintered boron carbide. J Less-Common Met. 1981;82:37–47.
  • Li YY, Liu H, Li TY, et al. 核反应堆用碳化硼芯块常压烧结工艺研究 [Study on pressureless sintering of B4C pellets used in nuclear reactors]. Powder Metall Technol. 2017;35(1):53–56. Chinese.
  • Wang LS, Yin BY, Fang YC. 用掺碳活化烧结技术制取碳化硼材料 [Boron carbide material fabricated by carbon-doping activated sintering]. Chin J Nonferrous Met. 2002;12(6):1210–1213. Chinese.
  • Yuan YP, Jiang HW, Zheng YJ. 葡萄糖助剂对无压烧结碳化硼性能的影响 [Effect of glucose additives on the properties of pressureless-sintered boron carbide]. J Mudanjiang Normal Univ. 2016;3:36–38. Chinese.
  • Suzuki H, Hase T, Maruyama T. 炭化ホウ素の焼結に及ぽす炭素の影響 [Effect of carbon on sintering of boron carbide]. Ceram Soc Jpn. 1979;87(8):430–433. Japanese.
  • Schwetz KA, Vogt G. Elektroschmelzwerk Kempten Gmbh, Munich, Fed, Rep. of Germany. Process for the production of dense sintered shaped articles of polycrystalline boron carbide by pressureless sintering. United States patent US 4,195, 066.1980 Mar 25.
  • Sigl SL, Schwetz KA. Pressureless sintering of boron carbide with carbon black. In: G Ziegler, H Hausner, editor. Proceedings of Euro-ceramics II. Köln: Deutsche Keramische Gesellschafe e.V.; 1991. Vol. 1, p. 171–182.
  • Lee H, Speyer RF. Hardness and fracture toughness of pressureless-sintered boron carbide (B4C). J Am Ceram Soc. 2002;85(5):1291–1293.
  • Dole SL, Prochazka S, Doremus RH. Microstructural coarsening during sintering of boron carbide. J Am Ceram Soc. 1989;72(6):958–966.
  • Dole SL, Prochazka S. Densification and microstructure development in boron carbide. Ceram Eng Sci Proc. 1985;6(7–8):1151–1160.
  • Speyer RF, Lee H. Advances in pressureless densification of boron carbide. J Mater Sci. 2004;39(19):6017–6021.
  • Schwetz KA, Sigl LS, Pfau L. Mechanical properties of injection molded B4C–C ceramics. J Solid State Chem. 1997;133:68–76.
  • Sigl LS. Processing and mechanical properties of boron carbide sintered with TiC. J Eur Ceram Soc. 1998;18(11):1521–1529.
  • Niihara K. Sumitomo Electric Industries, Inc., Japan. Process for forming a sintered composite boron carbide body. United States patent US 5,637,269. 1997 Jun 10.
  • Li JL, Chen BB, Zhang W, et al. 陶瓷/石墨烯块体复合材料的研究进展 [Recent progress in ceramic/graphene bulk composites]. J Inorg Mater. 2014;29(3):225–236. Chinese.
  • Zhao Y, Sun KN, Wang WL, et al. Microstructure and anisotropic mechanical properties of graphene nanoplatelet toughened biphasic calcium phosphate composite. Ceram Int. 2013;39(7):7627–7634.
  • Li QS, Zhang YJ, Gong HY, et al. Enhanced fracture toughness of pressureless-sintered SiC ceramics by addition of graphene. J Mater Sci Technol. 2016;32(7):633–638.
  • Kovalčíková A, Sedlák R, Pawel R, et al. Mechanical properties of boron carbide + graphene platelet composites. Ceram Int. 2016;42(1):2094–2098.
  • Tan Y, Zhang H, Peng S. Electrically conductive graphene nanoplatelet/boron carbide composites with high hardness and toughness. Scr Mater. 2016;114:98–102.
  • Gao DZ, Jing J, Yu JC, et al. Graphene platelets enhanced pressureless-sintered B4C ceramics. R Soc Open Sci. 2018;5(4):1–7.
  • Halverson DC, Pyzik AJ, Aksay IA. Processing and microstructural characterization of B4C–Al cermets. Ceram Eng Sci Proc. 1985;6(7–8):736–744.
  • Mashhadi M, Nassaj ET, Sglavo VM. Pressureless sintering of boron carbide. Ceram Int. 2010;36(1):151–159.
  • Pyzik AJ, Aksay IA. Multipurpose boron carbide–aluminium composite and its manufacture via the control of the microstructure. United States patent US 4,702,770. 1987 Oct 27.
  • Bhattacharya AK, Petrovic JJ. Ductile phase toughening and R-curve behaviour in a B4C–Al cermet. J Mater Sci. 1992;27(8):2205–2210.
  • Stibbs D, Thompson R. United States Borax & Chemical Corporation, Los Angeles, Calif. Cold-pressed compositions. United States patent US 3,749,571. 1973 Jul 31.
  • Cai KF, Nan CW, Min XM. The effect of silicon addition on thermoelectric properties of a B4C ceramic. Mater Sci Eng B. 1999;67(3):102–107.
  • Wei HK, Zhang YJ, Gong HY. 热压烧结工艺制备SiC/B4C复合材料 [SiC/B4C composites prepared by hot pressing]. Bull Chin Ceram Soc. 2009;28(2):249–252. Chinese.
  • Xu CM, Zeng H, Zhang GJ. Pressureless sintering of boron carbide ceramics with Al–Si additives. Int J Refract Metals Hard Mater. 2013;41:2–6.
  • Frage N, Levin L, Frumin N, et al. Manufacturing B4C–(Al,Si) composite materials by metal alloy infiltration. J Mater Process Technol. 2003;143–144(1):486–490.
  • Kumazawa T, Honda T, Zhou Y, et al. Pressureless sintering of boron carbide ceramics. J Ceram Soc Jpn. 2008;116(12):1319–1321.
  • Miyazaki H, Zhou Y, Hyuga H, et al. Microstructure of boron carbide pressureless sintered in an Ar atmosphere containing gaseous metal species. J Eur Ceram Soc. 2010;30(4):999–1005.
  • Iseki T, Kameda T, Maruyama T. Interfacial reactions between SiC and aluminium during joining. J Mater Sci. 1984;19(5):1692–1698.
  • Levin L, Frage N, Dariel MP. The effect of Ti and TiO2 additions on the pressureless sintering of B4C. Metall Mater Trans A. 1999;30(12):3201–3210.
  • Liu WL, Tan J, Zhang HB, et al. 掺硼改性碳化硼陶瓷的研究 [Study on boron-doped B4C ceramics]. China Ceramic Industry. 2007;14(5):1–5. Chinese.
  • Grabchuk BL, Kislyi PS. Sintering of boron carbide containing small a mounts of free carbon. Sov Powder Metall Met Ceram. 1975;14(7):538–541.
  • Pyzik AJ, Beaman DR. Microstructure and properties of self-reinforced silicon nitride. J Am Ceram Soc. 2010;76(11):2737–2744.
  • Lee CH, Kim CH. Pressureless sintering and related phenomena of Al2O3-doped B4C reaction. J Mater Sci. 1992;27(23):6335–6340.
  • Kim HW, Koh YH, Kim HE. Densification and mechanical properties of B4C with Al2O3 as a sintering aid. J Am Ceram Soc. 2000;83(11):2863–2865.
  • Jiang HW, Fu SN, Huang HL, et al. 添加氧化铝烧结助剂的碳化硼陶瓷无压烧结工艺研究 [Pressureless sintering of boron carbide with an addition of alumina]. Powder Metall Technol. 2017;35(6):462–468. Chinese.
  • Skorokhod V, Vlajic MD, Krstic VD. Mechanical properties of pressureless sintered boron carbide containing TiB2 phase. J Mater Sci Lett. 1996;15(8):1337–1339.
  • Francois T. Boron carbide – a comprehensive review. J Eur Ceram Soc. 1990;6(4):205–225.
  • Skorokhod V, Vlajić MD, Krstić VD. Pressureless sintering of B4C–TiB2 ceramic composites. Mater Sci Forum. 1998;282–283:219–224.
  • Levin L, Frage N, Dariel MP. A novel approach for the preparation of B4C-based cermets. Int J Refract Met Hard Mater. 2000;18(2):131–135.
  • Skorokhod VV, Krstic VD. Processing, microstructure, and mechanical properties of B4C–TiB2 particulate sintered composites. pressureless sintering and microstructure evolution. Powder Metall Met Ceram. 2000;39(7–8):414–423.
  • Goldstein A, Geffen Y, Goldenberg A. Boron carbide–zirconium boride in situ composites by the reactive pressureless sintering of boron carbide–zirconia mixtures. J Am Ceram Soc. 2001;84(3):642–644.
  • Xie BY, Ma L, Gao DZ, et al. Influence of SiC on phase and microstructure of ZrB2 powders synthesized via carbothermal reduction at different temperatures. Ceram Int. 2018;44(8):8795–8799.
  • Baharvandi HR, Hadian AM, Abdizadeh A, et al. Investigation on addition of ZrO2–3 mol% Y2O3 powder on sintering behavior and mechanical properties of B4C. J Mater Sci. 2006;41(16):5269–5272.
  • Roy TK, Subramanian C, Suri AK. Pressureless sintering of boron carbide. Ceram Int. 2006;32(3):227–233.
  • Baharvandi HR, Hadian AM, Abdizade H, et al. Investigation on addition of talc on sintering behavior and mechanical properties of B4C. J Mater Eng Perform. 2006;15:280–283.
  • Liang HQ, Yao XM, Zhang H, et al. The effect of TiC on the liquid phase sintering of SiC ceramics with Al2O3 and Y2O3 additives. Key Eng Mater. 2014;602–603:197–201.
  • Liang HQ, Yao XM, Huang ZR, et al. The relationship between microstructure and flexural strength of pressureless liquid phase sintered SiC ceramics oxidized at elevated temperatures. Ceram Int. 2016;42(11):13256–13261.
  • Jeong K, Tatami J, Iijima M, et al. Fabrication of Si3N4 ceramics by post-reaction sintering using Si–Y2O3–Al2O3 nanocomposite particles prepared by mechanical treatment. Ceram Int. 2016;42(10):11554–11561.
  • Su GK, Tan DW, Guo WM, et al. Preparation of Si3N4–ZrSi2–ZrN–BN ceramic by reactive hot pressing and its processing properties. J Chin Ceram Soc. 2017;45(6):823–828.
  • Li WH, Li WX. 碳化硼陶瓷的液相烧结试验研究 [Liquid phase sintering of boron carbide]. J Harbin Univ Sci Technol. 2002;7(2):73–75. Chinese.
  • Wu GP, Jiao YF, Xie FM, et al. 液相烧结碳化硼陶瓷的实验研究 [Study on the experiment of liquid phase sintering boron carbide ceramics]. China Ceramics. 2015;51(11):68–70. Chinese.
  • Yamada S, Hirao K, Yamauchi Y, et al. Densification behaviour and mechanical properties of pressureless-sintered B4C-CrB2 ceramics. J Mater Sci. 2002;37:5007–5012.
  • Marek EV, Dudnik EM, Makarenko GN, et al. Physical properties of boron carbide alloys with vanadium and chromium additives. Porosh Metall. 1975;14(2):54–56.
  • Baharvandi HR, Hadian AM. Pressureless sintering of TiB2–B4C ceramic matrix composite. J Mater Eng Perform. 2008;17(6):838–841.
  • Srivatsan TS, Guruprasad G, Black D, et al. Influence of TiB2 content on microstructure and hardness of TiB2-B4C composite. Powder Technol. 2005;159(3):161–167.
  • Zorzi JE, Perottoni CA, Jornada JAHD. Hardness and wear resistance of B4C ceramics prepared with several additives. Mater Lett. 2005;59(23):2932–2935.
  • Zakhariev Z, Radev D. Properties of polycrystalline boron carbide sintered in the presence of W2B5 without pressing. J Mater Sci Lett. 1988;7(7):695–696.
  • Prochazka S. General Electric Company, Schenectady, N.Y. Dense sintered boron carbide containing beryllium carbide. United States patent US 4,005,235. 1977 Jan 25.
  • Li XG, Jiang DL, Zhang JX, et al. Pressureless sintering of boron carbide with Cr3C2 as sintering additive. J Eur Ceram Soc. 2014;34(5):1073–1081.
  • Rogl P. Refractory metal systems: phase diagrams crystallographic and thermodynamic data. In: Effenberg G, Ilyenko S, editors. Boron-carbon-chromium. Stuttgart: Springer Materials the Landolt-Bornstein Database; 2009. p. 357–383.
  • Kanno Y, Kawase K, Nakano K. Additive effect on sintering of boron carbide. Yogyo Kyokai Shi. 1987;95(11):1137–1140.
  • Bougoin M, Thevenot F. Pressureless sintering of boron carbide with an addition of polycarbosilane. J Mater Sci. 1987;22(1):109–114.
  • Mashhadi M, Nassaj ET, Mashhadi M, et al. Pressureless sintering of B4C–TiB2 composites with Al additions. Ceram Int. 2011;37(8):3229–3235.
  • Skorokhod V, Krstic VD. High strength-high toughness B4C–TiB2 composites. J Mater Sci Lett. 2000;19(3):237–239.
  • Watanahe T, Shoubu K. Mechanical properties of hot-pressed TiB2–ZrO2 composites. J Am Ceram Soc. 1985;68(2):34–36.
  • Panasyuk AD, Oreshkin VD, Maslennikova VR. Kinetics of the reactions of boron carbide with liquid aluminum, silicon, nickel, and iron. Sov Powder Metall Met Ceram. 1979;18(7):487–490.
  • Kim DK, Kim CH. Pressureless sintering and microstructural development of B4C–TiB2 composites. Adv Ceram Mater. 1988;3(1):52–55.
  • Ma L, Yu JC, Guo X, et al. Pressureless densification and properties of TiB2–B4C composite ceramics with Ni as additives. Micro Nano Lett. 2018;13(7):1–4.
  • Weaver GQ. Norton company, worcester, mass. Sintered high density boron carbide. United States patent US 4,320,204. 1982 Mar 16.
  • Moers K, Schroeter K, Wolff H. Fried. Krupp Aktiengesellschaft, Essen-on-the-Ruhr, Germany. Hard alloys. United States patent US 1,973,441. 1931 Apr 24.
  • Gu SJ, Wang MH, Xu HJ, et al. B2O3和Si粉的添加对碳化硼陶瓷性能的影响 [Effects of B2O3 and Si on the properties of boron carbide]. J Ceram. 2016;37(4):329–333.
  • Zhang XR, Zhang ZX, Wang WM, et al. Microstructure and mechanical properties of B4C–TiB2–SiC composites toughened by composite structural toughening phases. J Am Ceram Soc. 2017;100(7):3099–3107.
  • Cameron CP. W.R. Grace & Co.-Conn., New York, NY. Ceramic composites containing spinel, silicon carbide, and boron carbide. United States patent US 5,120,681. 1992 Jun 09.
  • Prochazka S, Coblenz WS. General electric company. Silicon carbide-boron carbide sintered body. United States patent US 4,081,284. 1978 Mar 28.
  • Kobayashi K, Maeda K, Sano H, et al. Formation and oxidation resistance of the coating formed on carbon material composed of B4C–SiC powders. Carbon. 1995;33(4):397–403.
  • Goldstein A, Yeshurun Y, Goldenberg A. B4c/metal boride composites derived from B4C/metal oxide mixtures. J Eur Ceram Soc. 2007;27(2):695–700.
  • Mu BC, Tang LD, Zhang H, et al. 稀土氧化物对碳化硼陶瓷性能的影响 [Influence of the rare-earth oxide on the properties of boron carbide ceramics]. Powder Metall Technol. 2008;26(3):187–191. Chinese.
  • Wei R, Zhang YJ, Gong HY, et al. The effect of rare-earth oxide additives on the densification of pressureless sintering B4C ceramics. Ceram Int. 2013;39(6):6449–6452.
  • Sairam K, Vishwanadh B, Sonber JK, et al. Competition between densification and microstructure development during spark plasma sintering of B4C–Eu2O3. J Am Ceram Soc. 2018;101:2516–2526.
  • Xu JY, Wu WY, Bian X, et al. GdB6对热压烧结B4C材料性能的影响 [Influence of GdB6 on performance of hot-pressing sintering B4C material]. Chinese Rare Eeaths. 2005;26(4):10–14. Chinese.
  • Celli M, Grazzi F, Zoppi M. A new ceramic material for shielding pulsed neutron scattering instruments. Nuclear Instrum Methods Phys Res A. 2006;565(2):861–863.
  • Sun C, Li YK, Wang YF, et al. B4c/CeB6 composite ceramic prepared by spark plasma sintering. Rare Met Mater Eng. 2016;45(8):2071–2074.
  • Pan D, Li SF, Zhang X, et al. Effect of graphite content on properties of B4C–W2B5 ceramic composites by in situ reaction of B-Gr-WC. J Am Ceram Soc. 2018;101:3617–3626.
  • Eqtesadi S, Motealleh A, Perera FH, et al. Fabricating geometrically-complex B4C ceramic components by robocasting and pressureless spark plasma sintering. Scr Mater. 2018;145:14–18.
  • Liu Z, Wang D, Li J, et al. Densification of high-strength B4C–TiB2 composites fabricated by pulsed electric current sintering of TiC-B mixture. Scr Mater. 2017;135:15–18.
  • Ren DL, Deng QH, Wang J, et al. Synthesis and properties of conductive B4C ceramic composites with TiB2 grain network. J Am Ceram Soc. 2018;101:1–7.
  • Ren DL, Deng QH, Wang J, et al. Densification and mechanical properties of pulsed electric current sintered B4C with in situ synthesized Al3BC obtained by the molten-salt method. J Eur Ceram Soc. 2017;37(15):1–8.
  • Rubino F, Pisaturo M, Senatore A, et al. Tribological characterization of SiC and B4C manufactured by plasma pressure compaction. J Mater Eng Perform. 2017;26(7):1–12.
  • Ma QC, Zhang GJ, Kan YM, et al. 六硼化硅(SiB6)添加剂对B4C陶瓷致密化与力学性能的影响 [Densification and mechanical properties of boron carbide ceramics with addition of silicon hexaboride]. J Inorg Mater. 2008;23(6):1175–1178. Chinese.
  • Lee H, Speyer RF. Pressureless sintering of boron carbide. J Am Ceram Soc. 2003;86(9):1468–1473.
  • Sairam K, Sonber JK, Murthy TSRC, et al. Development of B4C–HfB2 composites by reaction hot pressing. Int J Refract Met Hard Mater. 2012;35(1):32–40.
  • Grigor’ev ON, Koval’chuk VV, Zaporozhets OI, et al. Synthesis and physicomechanical properties of B4C–VB2 composites. Powder Metall Met Ceram. 2006;45(1–2):47–58.
  • Sun JL, Liu CX, Duan CY. Effect of Al and TiO2 on sinterability and mechanical properties of boron carbide. Mater Sci Eng A. 2009;509(1):89–93.
  • Kotsar’ TV, Danilovich DP, Ordan’yan SS, et al. Combined carbothermal synthesis of powders in the B4C–SiC–TiB2 system. Refract Ind Ceram. 2017;58(2):174–178.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.