Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 119, 2020 - Issue 2
530
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Spark plasma sintered bioceramics – from transparent hydroxyapatite to graphene nanocomposites: a review

, , , , , , , , , , , , , & show all
Pages 57-74 | Received 05 Aug 2019, Accepted 07 Nov 2019, Published online: 17 Nov 2019

References

  • Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74(7):1487–1510.
  • Learmonth ID, Young C, Rorabeck C. The operation of the century: total hip replacement. Lancet. 2007;370(9597):1508–1519.
  • Semlitsch M, Willert HG. Clinical wear behaviour of ultra-high molecular weight polyethylene cups paired with metal and ceramic ball heads in comparison to metal-on-metal pairings of hip joint replacements. Proc Inst Mech Eng Part H J Eng Med. 1997;211(1):73–88.
  • Lerouge S, Huk O, Yahia LH, et al. Ceramic-ceramic and metal-polyethylene total hip replacements: comparison of pseudomembranes after loosening. J Bone Joint Surg Br. 1997;79(1):135–139.
  • Nizard R, Sedel L, Hannouche D, et al. Alumina pairing in total hip replacement. J Bone Joint Surg Br. 2005;87(6):755–758.
  • Chokshi AH. Superplasticity in fine grained ceramics and ceramic composites: current understanding and future prospects. Mat Sci Eng A. 1993;166(1–2):119–133.
  • Hiraga K. Development of high-strain-rate superplastic oxide ceramics ( The 61th CerSJ awards for academic achievements). J Ceram Soc Jpn. 2007;115(1343):395–401.
  • Doremus RH. Bioceramics. J Mater Sci. 1992;27(2):285–297.
  • Dorozhkin SV. Bioceramics of calcium orthophosphates. Biomaterials. 2010;31(7):1465–1485.
  • Kitsugi T, Yamamuro T, Takeuchi H, et al. Bonding behavior of three types of hydroxyapatite with different sintering temperatures implanted in bone. Clin Orthop Relat Res &NA. 1988;234:280–290.
  • Norton J, Malik KR, Darr JA, et al. Recent developments in processing and surface modification of hydroxyapatite. Br Ceram Trans. 2013;105(3):113–139.
  • Goller G, Demirkıran H, Oktar FN, et al. Processing and characterization of bioglass reinforced hydroxyapatite composites. Ceram Int. 2003;29(6):721–724.
  • Wang M, Joseph R, Bonfield W. Hydroxyapatite-polyethylene composites for bone substitution: effects of ceramic particle size and morphology. Biomaterials. 1998;19(24):2357–2366.
  • Bakos D, Soldán M, Hernándezfuentes I. Hydroxyapatite-collagen-hyaluronic acid composite. Biomaterials. 1999;20(2):191–195.
  • Oktar FN, Göller G. Sintering affects on mechanical properties of glass-reinforced hydroxyapatite composites. Ceram Int. 2002;28(6):617–621.
  • Chawla KK. Ceramic matrix composites. Mater Des. 1998;11(1):30–36.
  • Fan JP, Zhuang D-M, Zhao D-Q, et al. Toughening and reinforcing alumina matrix composite with single-wall carbon nanotubes. Appl Phys Lett. 2006;89(12):14013.
  • Ahmad I, Cao H, Chen H, et al. Carbon nanotube toughened aluminum oxide nanocomposite. J Eur Ceram Soc. 2010;30(4):865–873.
  • Zhan G-D, Kuntz JD, Wan J, et al. Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat Mater. 2003;2(1):38–42.
  • Yamamoto G, Omori M, Hashida T, et al. A novel structure for carbon nanotube reinforced alumina composites with improved mechanical properties. Nanotechnology. 2008;19(31):315708.
  • Duszová A, Dusza J, Tomášek K, et al. Microstructure and properties of carbon nanotube/zirconia composite. J Eur Ceram Soc. 2008;28(5):1023–1027.
  • Mazaheri M, Mari D, Hesabi ZR, et al. Multi-walled carbon nanotube/nanostructured zirconia composites: outstanding mechanical properties in a wide range of temperature. Compos Sci Technol. 2011;71(7):939–945.
  • Dusza J, Blugan G, Morgiel J, et al. Hot pressed and spark plasma sintered zirconia/carbon nanofiber composites. J Eur Ceram Soc. 2009;29(15):3177–3184.
  • Wang H-z, Li X-d, Ma J, et al. Multi-walled carbon nanotube-reinforced silicon carbide fibers prepared by polymer-derived ceramic route. Compos Part A. 2012;43(3):317–324.
  • Gu Z, Yang Y, Li K, et al. Aligned carbon nanotube-reinforced silicon carbide composites produced by chemical vapor infiltration. Carbon N Y. 2011;49(7):2475–2482.
  • Patterson E, Backman D, Cloud G. 2013. Composite Materials and Joining Technologies for Composites, Volume 7, Conference Proceedings of the Society for Experimental Mechanics Series, Proceedings of the 2012 Annual Conference on Experimental and Applied Mechanics.
  • Balázsi C, Wéber F, Kövér Z, et al. Application of carbon nanotubes to silicon nitride matrix reinforcements. Curr Appl Phys. 2006;6(2):124–130.
  • Pasupuleti S, Peddetti R, Santhanam S, et al. Toughening behavior in a carbon nanotube reinforced silicon nitride composite. Mat Sci Eng A. 2008;491(1):224–229.
  • Balázsi C, Wéber F, Arató P, et al. Development of CNT/SiN composites with improved mechanical and electrical properties. Adv Sci Technol. 2006;45(6):1723–1728.
  • Balazsi C, Shen Z, Konya Z, et al. Processing of carbon nanotube reinforced silicon nitride composites by spark plasma sintering. Compos Sci Technol. 2005;65(5):727–733.
  • Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993;364(6439):737–737.
  • Bethune DS, Kiang CH, de Vries MS, et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature. 1993;363(6430):605–607.
  • Salvetat J-P, Bonard J-M, Thomson NH, et al. Mechanical properties of carbon nanotubes. Appl Phys A. 1999;69(3):255–260.
  • Lu JP. Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett. 1997;79(7):1297–1300.
  • Pop E, Mann D, Wang Q, et al. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 2006;6(1):96–100.
  • Kim YA, Muramatsu H, Hayashi T, et al. Thermal stability and structural changes of double-walled carbon nanotubes by heat treatment. Chem Phys Lett. 2004;398(1):87–92.
  • Ebbesen TW, Lezec HJ, Hiura H, et al. Electrical conductivity of individual carbon nanotubes. Nature. 1996;382(6586):54–56.
  • Lahiri D, Ghosh S, Agarwal A. Carbon nanotube reinforced hydroxyapatite composite for orthopedic application: a review. Mat Sci Eng C. 2012;32(7):1727–1758.
  • Usui Y, Aoki K, Narita N, et al. Carbon nanotubes with high bone-tissue compatibility and bone-formation acceleration effects. Small. 2008;4(2):240–246.
  • Akasaka T, Yokoyama A, Matsuoka M, et al. Thin films of single-walled carbon nanotubes promote human osteoblastic cells (Saos-2) proliferation in low serum concentrations. Mat Sci Eng C. 2010;30(3):391–399.
  • Kalbacova M, Kalbac M, Dunsch L, et al. Influence of single-walled carbon nanotube films on metabolic activity and adherence of human osteoblasts. Carbon N Y. 2007;45(11):2266–2272.
  • Constanda S, Stan MS, Ciobanu CS, et al. Carbon nanotubes-hydroxyapatite nanocomposites for an improved osteoblast cell response. 2016;2016(2016):1–10.
  • Strano MS, Moore VC, Miller MK, et al. The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes. J Nanosci Nanotechnol. 2003;3(1-2):81–86.
  • Sun J, Gao L, Li W. Colloidal processing of carbon nanotube/alumina composites. Chem Mater. 2002;14(14):5169–5172.
  • Chu BTT, Tobias G, Salzmann CG, et al. Fabrication of carbon-nanotube-reinforced glass–ceramic nanocomposites by ultrasonic in situ sol–gel processing. J Mater Chem. 2008;18(44):5344–5349.
  • Cha SI, Kim KT, Lee KH, et al. Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process. Scr Mater. 2005;53(7):793–797.
  • Katsuda Y, Gerstel P, Narayanan J, et al. Reinforcement of precursor-derived Si–C–N ceramics with carbon nanotubes. J Eur Ceram Soc. 2006;26(15):3399–3405.
  • Wang Y, Iqbal Z, Mitra S. Rapid, low temperature microwave synthesis of novel carbon nanotube–silicon carbide composite. Carbon N Y. 2006;44(13):2804–2808.
  • Zhu Y-F, Shi L, Liang J, et al. Synthesis of zirconia nanoparticles on carbon nanotubes and their potential for enhancing the fracture toughness of alumina ceramics. Compos Part B. 2008;39(7):1136–1141.
  • Mo CB, Cha SI, Kim KT, et al. Fabrication of carbon nanotube reinforced alumina matrix nanocomposite by sol–gel process. Mat Sci Eng A. 2005;395(1):124–128.
  • Lupo F, Kamalakaran R, Scheu C, et al. Microstructural investigations on zirconium oxide–carbon nanotube composites synthesized by hydrothermal crystallization. Carbon N Y. 2004;42(10):1995–1999.
  • Lu J, Zang JB, Shan SX, et al. Synthesis and characterization of core-shell structural MWNT-zirconia nanocomposites. Nano Lett. 2008;8(11):4070–4074.
  • Maensiri S, Laokul P, Klinkaewnarong J, et al. Carbon nanofiber-reinforced alumina nanocomposites: fabrication and mechanical properties. Mat Sci Eng A. 2007;447(1):44–50.
  • Balázsi C, Kónya Z, Wéber F, et al. Preparation and characterization of carbon nanotube reinforced silicon nitride composites. Mat Sci Eng C. 2015;23(6):1133–1137.
  • Choi W, Lahiri I, Seelaboyina R, et al. Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci. 2010;35(1):52–71.
  • Huang X, Yin Z, Wu S, et al. Graphene-based materials: synthesis, characterization, properties, and applications. Small. 2011;7(14):1876–1902.
  • Lee C, Wei X, Kysar JW, et al. Measurement of the elastic properties and intrinsic strength of Monolayer graphene. Science. 2008;321(5887):385–388.
  • Faccio R, Denis PA, Pardo H, et al. Mechanical properties of graphene nanoribbons. J Phys Condens Matter. 2009;21(28):285304.
  • El-Kady MF, Strong V, Dubin S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science. 2012;335(6074):1326–1330.
  • Ghosh S, Calizo I, Teweldebrhan D, et al. Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett. 2008;92(15):151911.
  • Chen J-H, Jang C, Xiao S, et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol. 2008;3(4):206–209.
  • Park SY, Park J, Sim SH, et al. Enhanced differentiation of human neural stem cells into neurons on graphene. Adv Mater. 2011;23(36):H263–H267.
  • Nayak TR, Andersen H, Makam VS, et al. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. Acs Nano. 2011;5(6):4670–4678.
  • Wang Y, Lee WC, Manga KK, et al. Fluorinated graphene for promoting neuro-induction of stem cells. Adv Mater. 2012;24(31):4285–4290.
  • Li N, Zhang Q, Gao S, et al. Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci Rep. 2013;3(4):132–132.
  • Lee WC, Lim CH, Kenry SC, et al. Cell-assembled graphene biocomposite for enhanced chondrogenic differentiation. Small. 2015;11(8):963–969.
  • Avouris P, Dimitrakopoulos C. Graphene: synthesis and applications. Mater Today. 2012;15(3):86–97.
  • Stankovich S, Dikin DA, Piner RD, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon N Y. 2007;45(7):1558–1565.
  • Wang K, Wang Y, Fan Z, et al. Preparation of graphene nanosheet/alumina composites by spark plasma sintering. Mater Res Bull. 2011;46(2):315–318.
  • Kun P, Tapasztó O, Wéber F, et al. Determination of structural and mechanical properties of multilayer graphene added silicon nitride-based composites. Ceram Int. 2012;38(1):211–216.
  • Tapasztó O, Tapasztó L, Markó M, et al. Dispersion patterns of graphene and carbon nanotubes in ceramic matrix composites. Chem Phys Lett. 2011;511(4):340–343.
  • Walker LS, Marotto VR, Rafiee MA, et al. Toughening in graphene ceramic composites. ACS Nano. 2011;5(4):3182–3190.
  • Munir ZA, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci. 2006;41(3):763–777.
  • Ragulya AV. Consolidation of ceramic nanopowders. Br Ceram Trans. 2008;107(3):118–134.
  • Eriksson M, Liu Y, Hu J, et al. Transparent hydroxyapatite ceramics with nanograin structure prepared by high pressure spark plasma sintering at the minimized sintering temperature. J Eur Ceram Soc. 2011;31(9):1533–1540.
  • Yu M, Grasso S, Mckinnon R, et al. Review of flash sintering: materials, mechanisms and modelling. Adv Appl Ceram. 2017;116(1):24–60.
  • Raj R. Joule heating during flash-sintering. J Eur Ceram Soc. 2012;32(10):2293–2301.
  • Dong Y, Chen IW, Guillon O. Onset criterion for flash sintering. J Am Ceram Soc. 2015;98(12):3624–3627.
  • Cologna M, Francis JSC, Raj R. Field assisted and flash sintering of alumina and its relationship to conductivity and MgO-doping. J Eur Ceram Soc. 2011;31(15):2827–2837.
  • Bajpai I, Han Y-H, Yun J, et al. Preliminary investigation of hydroxyapatite microstructures prepared by flash sintering. Adv Appl Ceram. 2016;115(5):276–281.
  • Biesuz M, Sglavo VM. Flash sintering of alumina: effect of different operating conditions on densification. J Eur Ceram Soc. 2016;36(10):2535–2542.
  • Guo HB, Miao X, Chen Y, et al. Characterization of hydroxyapatite- and bioglass-316L fibre composites prepared by spark plasma sintering. Mater Lett. 2004;58:304–307.
  • Chen QZ, Xu JL, Yu LG, et al. Spark plasma sintering of sol-gel derived 45S5 bioglass-ceramics: mechanical properties and biocompatibility. Mat Sci Eng C. 2012;32:494–502.
  • Grasso S, Chinnam RK, Porwal H, et al. Low temperature spark plasma sintering of 45S5 bioglass. J Non Cryst Solids. 2013;362:25–29.
  • Desogus L, Cuccu A, Montinaro S, et al. Classical bioglass and innovative CaO-rich bioglass powders processed by spark plasma sintering: a comparative study. J Eur Ceram Soc. 2015;35:4277–4285.
  • Li Z, Hu H, Khor KA. Design of air aging induced surface patterns of 45S5 bioglass compacted by spark plasma sintering. J Non Cryst Solids. 2016;445-446:69–76.
  • Belluci D, Desogus L, Montinaro S, et al. Innovative hydroxyapatite/bioactive glass composites processed by spark plasma sintering for bone tissure repair. J Eur Ceram Soc. 2017;37:1723–1733.
  • Bertolla L, Dlouhy I, Tatarko P, et al. Pressureless spark plasma-sintered bioglass 45S5 with enhanced mechanical properties and stress-induced new phase formation. J Eur Ceram Soc. 2017;37:2727–2736.
  • Belluci D, Salvatori R, Cannio M, et al. Bioglass and bioceramics composites processed by spark plasma sintering (SPS): biological evaluation versus SBF test. Biomed Glasses. 2018;4:21–31.
  • Takikawa K, Akao M. Fabrication of transparent hydroxyapatite and application to bone marrow derived cell/hydroxyapatite interaction observation in-vivo. J Mater Sci Mater Med. 1996;7(7):439–445.
  • Kotobuki N, Ioku K, Kawagoe D, et al. Observation of osteogenic differentiation cascade of living mesenchymal stem cells on transparent hydroxyapatite ceramics. Biomaterials. 2005;26(7):779–785.
  • John A, Varma HK, Vijayan S, et al. In vitro investigations of bone remodeling on a transparent hydroxyapatite ceramic. Biomed Mater. 2009;4(1):015007.
  • Kim B-N, Hiraga K, Morita K, et al. Spark plasma sintering of transparent alumina. Scr Mater. 2007;57(7):607–610.
  • Uematsu K, Takagi M, Honda T, et al. Transparent hydroxyapatite prepared by hot isostatic pressing of filter cake. J Am Ceram Soc. 1989;72(8):1476–1478.
  • Ioku K, Yoshimura M, Somiya S. Hydrothermal synthesis of ultrafine hydroxyapatite single crystals. J Ceram Soc Jpn. 1988;9(9):1565–1570.
  • Fang Y, Agrawal DK, Roy DM, et al. Fabrication of transparent hydroxyapatite ceramics by ambient-pressure sintering. Mater Lett. 1995;23(1):147–151.
  • Kim B-N, Prajatelistia E, Han Y-H, et al. Transparent hydroxyapatite ceramics consolidated by spark plasma sintering. Scr Mater. 2013;69(5):366–369.
  • Yun J, Son H, Prajatelistia E, et al. Characterisation of transparent hydroxyapatite nanoceramics prepared by spark plasma sintering. Adv Appl Ceram. 2014;113(2):67–72.
  • Watanabe Y, Ikoma T, Monkawa A, et al. Fabrication of transparent hydroxyapatite sintered body with high crystal orientation by pulse electric current sintering. J Am Ceram Soc. 2005;88(1):243–245.
  • Gandhi AA, Gunning RD, Ryan KM, et al. The role of texturing and densification on optical transmittance of hydroxyapatite ceramics. J Am Ceram Soc. 2010;93(11):3773–3777.
  • Wakai F, Kodama Y, Sakaguchi S, et al. Superplasticity of hot isostatically pressed hydroxyapatite. J Am Ceram Soc. 1990;73(2):457–460.
  • Tago K, Itatani K, Suzuki TS, et al. Densification and superplasticity of hydroxyapatite ceramics. J Ceram Soc Jpn. 2005;113(1322):669–673.
  • Itatani K, Kobayashi A, Watanabe D, et al. Superplasticity of hydroxyapatite specimen fabricated by two-step sintering. J Soc Inorganic Mat Jpn. 2009;16:8–14.
  • Itatani K, Tsuchiya K, Sakka Y, et al. Superplastic deformation of hydroxyapatite ceramics with BO or NaO addition fabricated by pulse current pressure sintering. J Eur Ceram Soc. 2011;31(14):2641–2648.
  • Han YH, Kim B-N, Yoshida H, et al. Spark plasma sintered superplastic deformed transparent ultrafine hydroxyapatite nanoceramics. Adv Appl Ceram. 2016;115(3):174–184.
  • Yoshida H, Kim B-N, Son H-W, et al. Superplastic deformation of transparent hydroxyapatite. Scr Mater. 2013;69(2):155–158.
  • Gao C, Feng P, Peng S, et al. Carbon nanotubes, graphene and boron nitride nanotubes reinforced bioactive ceramics for bone repair. Acta Biomater. 2017;61(1):1–20.
  • Kumar S, Rani R, Dilbaghi N, et al. Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chem Soc Rev. 2016;46(1):158–196.
  • Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 2011;7(7):2769–2781.
  • Lei T, Wang L, Ouyang C, et al. In situ preparation and enhanced mechanical properties of carbon nanotube/hydroxyapatite composites. Int J Appl Ceram Technol. 2011;8(3):532–539.
  • Kim DY, Han YH, Lee JH, et al. Characterization of multiwalled carbon nanotube-reinforced hydroxyapatite composites consolidated by spark plasma sintering. Biomed Res Int. 2014;2014(24):768254.
  • Wang PE, Chaki TK. Sintering behaviour and mechanical properties of hydroxyapatite and dicalcium phosphate. J Mater Sci Mater Med. 1993;4(2):150–158.
  • Curtin WA, Sheldon BW. CNT-reinforced ceramics and metals. Mater Today. 2004;7(11):44–49.
  • Despres JF, Lafdi K, Daguerre E. Flexibility of graphene layers in carbon nanotubes. Carbon N Y. 1995;33(1):87–89.
  • Dresselhaus MS. Carbon nanotubes: synthesis, structure, properties, and applications. J Appl Phys. 2001;116(5):053518–053518-10.
  • Luo ZP, Koo JH. Quantitative study of the dispersion degree in carbon nanofiber/polymer and carbon nanotube/polymer nanocomposites. Mater Lett. 2008;62(20):3493–3496.
  • Matthews FL, Rawlings RD. Ceramic matrix composites – composite materials – 4. Compos Mat. 1999: 118–167. https://www.sciencedirect.com/science/article/pii/B9781855734739500072.
  • Lu XY, Qiu T, Liu JY, et al. Growth of carbon nanotubes in calcium phosphate matrix with different Ca/P Molar ratio. Mater Sci Forum. 2011;688:141–147.
  • Bai Y, Neupane MP, Park IS, et al. Electrophoretic deposition of carbon nanotubes–hydroxyapatite nanocomposites on titanium substrate. Mat Sci Eng C. 2010;30(7):1043–1049.
  • Hahn B-D, Lee J-M, Park D-S, et al. Mechanical and in vitro biological performances of hydroxyapatite–carbon nanotube composite coatings deposited on Ti by aerosol deposition. Acta Biomater. 2009;5(8):3205–3214.
  • Xu JL, Khor KA, Sui JJ, et al. Preparation and characterization of a novel hydroxyapatite/carbon nanotubes composite and its interaction with osteoblast-like cells. Mat Sci Eng C. 2009;29(1):44–49.
  • Xu J, Khor KA, Sui J, et al. Comparative proteomics profile of osteoblasts cultured on dissimilar hydroxyapatite biomaterials: an iTRAQ-coupled 2-D LC-MS/MS analysis. Proteomics. 2008;8(20):4249–4258.
  • Cheng C, Müller KH, Koziol KKK, et al. Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells. Biomaterials. 2009;30(25):4152–4160.
  • Fiorito S. Carbon nanotubes: angels or demons?. Boca Raton (FL): Pan Stanford; 2008.
  • Ren H-X, Chen X, Liu J-H, et al. Toxicity of single-walled carbon nanotube: how we were wrong? Mater Today. 2010;13(1-2):6–8.
  • Hussain MA. On the cytotoxicity of carbon nanotubes. Curr Sci. 2009;96(5):664–673.
  • Li A, Sun K, Dong W, et al. Mechanical properties, microstructure and histocompatibility of MWCNTs/HAp biocomposites. Mater Lett. 2007;61(8–9):1839–1844.
  • Facca S, Lahiri D, Fioretti F, et al. In vivo osseointegration of nano-designed composite coatings on titanium implants. Acs Nano. 2011;5(6):4790–4799.
  • Tanaka M, Sato Y, Zhang M, et al. In vitro and in vivo evaluation of a three-dimensional porous multi-walled carbon nanotube scaffold for bone regeneration. Nanomaterials. 2017;7(2):46.
  • Jing Z, Wu Y, Su W, et al. Carbon nanotube reinforced collagen/hydroxyapatite scaffolds improve bone tissue formation in vitro and in vivo. Ann Biomed Eng. 2017;45(9):2075–2087.
  • Khan AS, Hussain AN, Sidra L, et al. Fabrication and in vivo evaluation of hydroxyapatite/carbon nanotube electrospun fibers for biomedical/dental application. Mater Sci Eng C Mater Biol Appl. 2017;80:387–396.
  • Rafiee MA, Rafiee J, Srivastava I, et al. Fracture and fatigue in graphene nanocomposites. Small. 2010;6(2):179–183.
  • Nieto A, Lahiri D, Agarwal A. Synthesis and properties of bulk graphene nanoplatelets consolidated by spark plasma sintering. Carbon N Y. 2012;50(11):4068–4077.
  • Zhang L, Liu W, Yue C, et al. A tough graphene nanosheet/hydroxyapatite composite with improved in vitro, biocompatibility. Carbon N Y. 2013;61(11):105–115.
  • Liu Y, Huang J, Li H. Synthesis of hydroxyapatite–reduced graphite oxide nanocomposites for biomedical applications: oriented nucleation and epitaxial growth of hydroxyapatite. J Mater Chem B. 2013;1(13):1826–1834.
  • Li M, Xiong P, Yan F, et al. An overview of graphene-based hydroxyapatite composites for orthopedic applications. Bioactive Materials. 2018;3(1):1–18.
  • Fan Z, Wang J, Wang Z, et al. One-pot synthesis of graphene/hydroxyapatite nanorod composite for tissue engineering. Carbon N Y. 2014;66:407–416.
  • Oyefusi A, Olanipekun O, Neelgund GM, et al. Hydroxyapatite grafted carbon nanotubes and graphene nanosheets: promising bone implant materials. Spectrochim Acta, Part A. 2014;132:410–416.
  • Li Y, Liu C, Zhai H, et al. Biomimetic graphene oxide–hydroxyapatite composites via in situ mineralization and hierarchical assembly. RSC Adv. 2014;4(48):25398–25403.
  • Liu H, Xi P, Xie G, et al. Simultaneous reduction and surface Functionalization of graphene oxide for hydroxyapatite mineralization. J Phys Chem C. 2012;116(5):3334–3341.
  • Janković A, Eraković S, Mitrić M, et al. Bioactive hydroxyapatite/graphene composite coating and its corrosion stability in simulated body fluid. J Alloys Comp. 2015;624:148–157.
  • Zanin H, Saito E, Marciano FR, et al. Fast preparation of nano-hydroxyapatite/superhydrophilic reduced graphene oxide composites for bioactive applications. J Mater Chem B. 2013;1(38):4947–4955.
  • Yang K, Zhang S, Zhang G, et al. Graphene in mice: ultrahigh In vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010;10(9):3318–3323.
  • Nie W, Peng C, Zhou X, et al. Three-dimensional porous scaffold by self-assembly of reduced graphene oxide and nano-hydroxyapatite composites for bone tissue engineering. Carbon N Y. 2017;116:325–337.
  • Leonov AA, Khasanov AO, Danchenko VA, et al. Spark plasma sintering of ceramic matrix composite based on alumina, reinforced by carbon nanotubes. IOP Conference Series: Materials Science and Engineering. 2017;286(1):012034.
  • Peigney A, Garcia FL, Estournès C, et al. Toughening and hardening in double-walled carbon nanotube/nanostructured magnesia composites. Carbon N Y. 2010;48(7):1952–1960.
  • Xia Z, Riester L, Curtin WA, et al. Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Mater. 2004;52(4):931–944.
  • Zhang SC, Fahrenholtz WG, Hilmas GE, et al. Pressureless sintering of carbon nanotube–Al2O3, composites. J Eur Ceram Soc. 2010;30(6):1373–1380.
  • Ahmad K, Pan W. Microstructure-toughening relation in alumina based multiwall carbon nanotube ceramic composites. J Eur Ceram Soc. 2015;35(2):663–671.
  • Zhang T, Kumari L, Du GH, et al. Mechanical properties of carbon nanotube–alumina nanocomposites synthesized by chemical vapor deposition and spark plasma sintering. Compos Part A Appl Sci Manuf. 2009;40(1):86–93.
  • Puchy V, Hvizdos P, Dusza J, et al. Wear resistance of Al2O3–CNT ceramic nanocomposites at room and high temperatures. Ceram Int. 2013;39(5):5821–5826.
  • Morales–Rodríguez A, Gallardo–López A, Fernández–Serrano A, et al. Improvement of Vickers hardness measurement on SWNT/Al2O3, composites consolidated by spark plasma sintering. J Eur Ceram Soc. 2014;34(15):3801–3809.
  • Sikder P, Sarkar S, Biswas KG, et al. Improved densification and mechanical properties of spark plasma sintered carbon nanotube reinforced alumina ceramics. Mat Chem Phys. 2016;170:99–107.
  • Ogihara N, Usui Y, Aoki K, et al. Biocompatibility and bone tissue compatibility of alumina ceramics reinforced with carbon nanotubes. Nanomedicine. 2012;7(7):981–993.
  • Nieto A, Huang L, Han Y-H, et al. Sintering behavior of spark plasma sintered alumina with graphene nanoplatelet reinforcement. Ceram Int. 2015;41(4):5926–5936.
  • Nieto A, Zhao JM, Han Y-H, et al. Microscale tribological behavior and in vitro biocompatibility of graphene nanoplatelet reinforced alumina. J Mech Behav Biomed Mater. 2016;61:122–134.
  • Lahiri D, Das S, Choi W, et al. Unfolding the damping behavior of multilayer graphene membrane in the low-frequency regime. ACS Nano. 2012;6(5):3992–4000.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.