Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 119, 2020 - Issue 2
356
Views
4
CrossRef citations to date
0
Altmetric
Articles

Enhanced thermoelectric properties in MgAgSb composite with Ag3Sb fabricated by the microwave-assisted process and subsequent spark plasma sintering

, , , , , & ORCID Icon show all
Pages 107-113 | Received 25 Nov 2019, Accepted 11 Dec 2019, Published online: 21 Dec 2019

References

  • Yang L, Chen Z-G, Dargusch MS, et al. High performance thermoelectric materials: progress and their applications. Adv Energ Mater. 2018;8(6):1701797. doi: 10.1002/aenm.201701797
  • He J, Tritt TM. Advances in thermoelectric materials research: looking back and moving forward. Science. 2017;357(6358):eaak9997. DOI:10.1126/science.aak9997.
  • Pei Y, Shi X, LaLonde A, et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature. 2011;473(7345):66–69. doi: 10.1038/nature09996
  • Heremans JP, Wiendlocha B, Chamoire AM. Resonant levels in bulk thermoelectric semiconductors. Eng Environ Sci. 2012;5(2):5510–5530.
  • Zhao LD, Lo S-H, Zhang Y, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature. 2014;508(7496):373–377. doi: 10.1038/nature13184
  • Xie H, Su X, Zhang X, et al. Origin of intrinsically low thermal conductivity in Talnakhite Cu17.6Fe17.6S32 thermoelectric material: correlations between lattice dynamics and thermal transport. J Am Ceram Soc. 2019;141(27):10905–10914.
  • Gao L, Zhai S, Liu R, et al. Enhanced thermoelectric performance of CdO ceramics via Ba2+ doping. J Am Ceram Soc. 2015;98(10):3285–3290. doi: 10.1111/jace.13780
  • Zhao LD, Zhang X, Wu H, et al. Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe. J Am Chem Soc. 2016;138(7):2366–2373. doi: 10.1021/jacs.5b13276
  • Tang Y, Gibbs ZM, Agapito LA, et al. Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. Nat Mater. 2015;14:1223. doi: 10.1038/nmat4430
  • Hu L, Zhu T, Liu X, et al. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv Funct Mater. 2014;24(33):5211–5218. doi: 10.1002/adfm.201400474
  • Chen X, Wu H, Cui J, et al. Extraordinary thermoelectric performance in n-type manganese doped Mg3Sb2 Zintl: high band degeneracy, tuned carrier scattering mechanism and hierarchical microstructure. Nano Energy. 2018;52:246–255. doi: 10.1016/j.nanoen.2018.07.059
  • He W, Wang D, Wu H, et al. High thermoelectric performance in low-cost SnS0. 91Se0. 09 crystals. Science. 2019;365(6460):1418. doi: 10.1126/science.aax5123
  • Kirkham MJ, dos Santos AM, Rawn CJ, et al. Ab initio determination of crystal structures of the thermoelectric material MgAgSb. Phys Rev B. 2012;85(14): 144120. doi:10.1103/PhysRevB.85.144120.
  • Feng Z, Zhang J, Yan Y, et al. Ag-Mg antisite defect induced high thermoelectric performance of alpha-MgAgSb. Sci Rep. 2017;7(1):2572. doi: 10.1038/s41598-017-02808-8
  • Liu Z, Shuai J, Mao J, et al. Effects of antimony content in MgAg 0.97 Sb x on output power and energy conversion efficiency. Acta Mater. 2016;102:17–23. doi: 10.1016/j.actamat.2015.09.033
  • Ying P, Liu X, Fu C, et al. High performance α-MgAgSb thermoelectric materials for low temperature power generation. Chem Mater. 2015;27(3):909–913. doi: 10.1021/cm5041826
  • Voronin MV, Osadchii EG. Standard thermodynamic properties of Ag3Sb and Ag6Sb evaluated by EMF measurements. Inorg Mater. 2013;49(6):550–554. doi: 10.1134/S0020168513060186
  • Sui J, Shuai J, Lan Y, et al. Effect of Cu concentration on thermoelectric properties of nanostructured p -type MgAg 0.97−×Cu×Sb 0.99. Acta Mater. 2015;87:266–272. doi: 10.1016/j.actamat.2015.01.018
  • Zheng Y, Liu C, Miao L, et al. Extraordinary thermoelectric performance in MgAgSb alloy with ultralow thermal conductivity. Nano Energy. 2019;59:311–320. doi: 10.1016/j.nanoen.2019.02.045
  • Shuai J, Kim HS, Lan Y, et al. Study on thermoelectric performance by Na doping in nanostructured Mg 1−x Na×Ag 0.97 Sb 0.99. Nano Energy. 2015;11:640–646. doi: 10.1016/j.nanoen.2014.11.027
  • Ohno S, Imasato K, Anand S, et al. Phase boundary mapping to obtain n-type Mg3Sb2-based thermoelectrics. Joule. 2018;2(1):141–154. doi: 10.1016/j.joule.2017.11.005
  • Xiong D-B, Okamoto NL, Inui H. Enhanced thermoelectric figure of merit in p-type Ag-doped ZnSb nanostructured with Ag3Sb. Scr Mater. 2013;69(5):397–400. doi: 10.1016/j.scriptamat.2013.05.029

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.