Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 119, 2020 - Issue 3
19,469
Views
127
CrossRef citations to date
0
Altmetric
Review

A review of cold sintering processes

, ORCID Icon, , , , , & show all
Pages 115-143 | Received 12 Sep 2019, Accepted 16 Dec 2019, Published online: 16 Jan 2020

References

  • Ashby M, Johnson K. Materials: The stuff that surrounds us. Mater design; 2014. p. 62–98.
  • Nath AJ, Lal R, Das AK. Fired bricks: CO2 emission and food insecurity. Glob Challenges. 2018;2:1700115.
  • Sohrabi Baba Heidary D, Lanagan M, Randall CA. Contrasting energy efficiency in various ceramic sintering processes. J Eur Ceram Soc. 2018;38:1018–1029.
  • Faouri SS, Mostaed A, Dean JS, et al. High quality factor cold sintered Li2MoO4BaFe12O19 composites for microwave applications; 166; 2019.
  • Saitta ET, Kaye TG, Vinther J. Sediment-encased maturation: a novel method for simulating diagenesis in organic fossil preservation. Palaeontology. 2019;62:135–150.
  • Kendall K. Theoretical aspects of solid-solid adhesion. Sci Prog. 1988;72:155–171.
  • Kendall K, Kendall M, Rehfeldt F, et al. Phenomenology of adhesion: from macro- to nano-systems. In: Adhesion of cells, viruses and nanoparticles. Dordrecht: Springer Netherlands; 2010. p. 21–43.
  • Brill R, Melczynski I. Hydrothermal sintering. Angew Chemie Int Ed English. 1964;3:133–133.
  • Turba E, Rumpf H. Zugfestigkeit von Preßlingen mit vorwiegender Bindung durch van der Waals-Kräfte und ihre Beeinflussung durch Adsorptionsschichten. Chemie Ing Tech. 1964;36:230–240.
  • Turba E, Rumpf H. Tensile strength of pressed compacts chiefly bonded by van der Waals forces and influence exerted by adhesion layers. Silic Ind. 1965;30:409–422.
  • Hirano S-I, Somiya S. Hydrothermal reaction sintering of pure Cr2O3. J Am Ceram Soc. 1976;59:534–534.
  • Gutmanas EY, Rabinkin A, Roitberg M. Cold sintering under high pressure. Scr Metall. 1979;13:11–15.
  • Gutmanas EY, Rabinkin A, Roitberg M. On cold sintering of metal-bonded diamond composites. Mater Sci Eng. 1980;45:269–275.
  • Gutmanas EY, Premkumar M, Lawley A. Microstructure and mechanical properties of cold sintered P/M aluminum alloys. Prog Powder Metall. 1984;39:669–682.
  • Goldman DB, Gutmanas EY, Zak D. Reduction of oxides and cold sintering of water-atomized powders of nickel, Ni-20Cr and Nimonic 80A. J Mater Sci Lett. 1985;4:1208–1212.
  • Gotman I, Gutmanas EY. Joining of P/M high speed tool steel with cobalt and ferrous alloys by high pressure consolidation. In: Proc Horiz Powder Metall Proc Int Powder Metall Conf Exhib; Schmid. 1986;2:703–706.
  • Gutmanas EY, Goldman DB, Clark JB, et al. Cold sintered stainless steel–chromium oxide composites. Prog Powder Metall. 1986;41:631–640.
  • Gutmanas EY, Goldman DB, Hart S, et al. Cold sintered 4640 steel-vanadium carbide composites. In: Proc Horiz Powder Metall Proc Int Powder Metall Conf Exhib; Schmid. 1986;2:1083–1086.
  • Pressões EMA. Master thesis: Estudo de sinterizaçao de cerâmicas em altas pressões; 1990.
  • Agatonovic R, Radojevic B, Blank V, et al. Cold sintering of copper binary systems exposed to shear deformation. Powder Technol. 1992;72:193–195.
  • Rosa AR, Gallas MR, da Jornada JAH. ‘Cold’ sintering of nanometric γ-Al2O3 at high pressures. Ceram (Sao Paulo). 1996;42:162–165.
  • Agatonovic RM, Blank VD, Solpan Y, et al. Cold sintering of molybdenum powder under the influence of applied shear deformation. High Temp – High Press. 1992;24:267–270.
  • Costa TMH, Gallas MR, Benvenutti EV, et al. Study of nanocrystalline γ-Al2O3 produced by high-pressure compaction. J Phys Chem B. 1999;103:4278–4284.
  • Lashmore DS, Dariel MP, Johnson CE, et al. Restorative alloys and composites from the mixtures with acid-assisted cold sintering and formation of intermetallic compounds. U.S. 1999, 27 pp., Cont.-in-part of U.S. Ser. No. 133,316, ab.
  • Đuričić MR, Aćimović-Pavlović Z. Investigation of mathematical relations between technological parameters and properties of cold-sintered iron. In: Proceedings of the Advanced Science and Technology of Sintering; Kluwer Academic/Plenum Publishers, 1999; p. 565–568.
  • Gutmanas EY, Gotman I, Sharipova A, et al. Drug loaded biodegradable load-bearing nanocomposites for damaged bone repair. AIP Conf Proc. 2017;1882:020025/1–020025/11.
  • Yamasaki N, Yanagisawa K, Nishioka M, et al. Production of hardened boehmite by hydrothermal hot-pressing technique. Reports Res Lab Hydrothermal Chem (Kochi, Japan). 1984;5:48–51.
  • Yanagisawa K, Nishioka M, Yamasaki N. Immobilization of radioactive wastes by hydrothermal hot pressing. Am Ceram Soc Bull. 1985;64:1563–1567.
  • Yamasaki N, Nishioka M, Yanagisawa K, et al. Aggregate formation of silica under hydrothermal conditions. J Ceram Assoc Japan. 1984;92:150–152.
  • Nishizawa H. Effect of water on sintering of monoclinic ZrO2. Yogyo Kyokai Shi/Journal Ceram Soc Japan. 1984;92:422–423.
  • Yanagisawa K, Kanahara S, Nishiokav M, et al. Immobilization of radioactive wastes in hydrothermal synthetic rock. II) Hydrothermal synthesis of pollucite. J Nucl Sci Technol. 1984;21:558–560.
  • Sōmiya S. Hydrothermal reaction sintering of high density sintered oxides. Hydrothermal React Mater Sci Eng. 1989: 26–36.
  • Somiya S. Hydrothermal reaction sintering. Funtai Oyobi Fummatsu Yakin/Journal Japan Soc Powder Powder Metall. 1989;36:731–735.
  • Yanagisawa K, Nishioka M, Yamasaki N. Immobilization of cesium into pollucite structure by hydrothermal hot-pressing. J Nucl Sci Technol. 1987;24:51–60.
  • Yamasaki N, Yanagisawa K, Nishioka M. Solidification of inorganic powder compact by hydrothermal hot-pressing method. Yoyuen Oyobi Koon Kagaku. 1989;32:177–195.
  • Xianping M, Fukushima Y, Yanagisawa K, et al. Low temperature sintering of sepiolite by hydrothermal hot-pressing technique. Clay Sci. 1989;7:219–225.
  • Ioku K, Kai T, Nishioka M, et al. Microstructure-designed hydroxyapatite ceramics prepared by hydrothermal hot-pressing. Trans Mater Res Soc Japan. 1990;1:393–406.
  • Yanagisawa K, Nishioka M, Ioku K, et al. Neck formation of spherical silica particles by hydrothermal hot pressing. J Mater Sci Lett. 1991;10:7–8.
  • Ioku K, Kai T, Nishioka M, et al. Bioactive glass-ceramics prepared by hydrothermal hot-pressing. Nippon Kagaku Kaishi. 1991;1991:1408–1412.
  • Yamasaki N, Xiang L, Ochi H, et al. Solidification of incineration ash and arsenic-bearing waste by hydrothermal hot pressing method. Reports Res Lab Hydrothermal Chem (Kochi, Japan). 1997;8:65–69.
  • Fukushima Y, Mizutani T, Inagaki S, et al. Clay mineral-based ceramics and their manufacture. Jpn Kokai Tokkyo Koho. 1991: 8.
  • Yamasaki N, Kai T, Nishioka M, et al. Preparation of biologically active glass ceramics with rod-shaped crystals dispersion by hydrothermal hot-pressing. J Mater Sci Lett. 1992;11:233–234.
  • Nishioka M, Yamasaki N, Amano H, et al. Immobilization of tritiated water by hydrothermal hot-pressing. Waste Manag (Amsterdam Netherlands). 1992;12:373–378.
  • Meng X, Ji T, Pang W. Studies on the solidification and characterizations of USY-type molecular sieve and kaolin by hydrothermal hot-pressing technique. Gaodeng Xuexiao Huaxue Xuebao. 1993;14:741–744.
  • Kaneko M. Solidification of ion-exchange resins by hydrothermal hot-pressing. J Mater Sci Lett. 1993;12:591–593.
  • Ogawa S, Minami S. Reuse technology of sewage sludge. Ueisuto, Risosu. 1993;27:2–10.
  • Yanagisawa K, Sasaki M, Nishioka M, et al. Preparation of sintered compacts of anatase by hydrothermal hot-pressing. J Mater Sci Lett. 1994;13:765–766.
  • Gamoh K, Yamasaki N. Dehydration condensation of amino acids under hydrothermal hot-pressing environments. Bunseki Kagaku. 1998;47:303–308.
  • Onoki T, Hosoi K, Hashida T. Joining hydroxyapatite ceramics and titanium alloys by hydrothermal method. Key Eng Mater. 2003;240–242:571–574.
  • Onoki T, Hosoi K, Hashida T. Novel techniques of hydroxyapatite coating on titanium utilizing hydrothermal hot-pressing. Trans Mater Res Soc Japan. 2004;29:2675–2678.
  • Yokosawa K, Korablov S, Tohji K, et al. The possibility of diamond sintering by hydrothermal hot-pressing. AIP Conf Proc. 2006;833:100–103.
  • Katsuyama S, Kishida A, Ito M. Synthesis of NaxCo2O4 by the hydrothermal hot-pressing and its thermoelectric properties. J Alloys Compd. 2006;414:215–220.
  • Nakahira A, Takimura M, Yamasaki Y. Synthesis of bulky mesoporous silica (FSM) by hydrothermal hot-pressing method. J Non Cryst Solids. 2007;353:4203–4207.
  • Zhu L, Lian G, Tan M, et al. Reaction of hexagonal boron nitride nanocrystals under mild hydrothermal conditions. Zeitschrift Fuer Naturforschung, B Chem Sci. 2008;63:742–746.
  • Liu X, Cui D, Li Y, et al. Preparation and characterization of ZrO2 porous nanosolid and its composite fluorescent materials. J Mater Sci. 2008;43:1730–1733.
  • Kubo T, Takeuchi M, Matsuoka M, et al. Morphologic control of Pt supported titanate nanotubes and their photocatalytic property. Catal Letters. 2009;130:28–36.
  • Liu X. Preparation of γ-Al2O3 porous nanosolid/fluorescein fluorescent nanocomposites by a simple method. Mater Sci Eng B Adv Funct Solid-State Mater. 2010;175:86–89.
  • Nakahira A, Kubo T, Yamasaki Y. Microstructural control of mesoporous bulk composed of TiO2-derived titanate nanotubes. ACS Appl Mater Interfaces. 2010;2:1136–1140.
  • Xie Y, Li J, Yue F, et al. Grain size effect and low temperature-sintering technologies for dielectric nano-ceramics. Guisuanyan Xuebao. 2012;40:872–878.
  • Onoda H, Yamasaki T. Synthesis of bulk rare earth phosphates UV hydrothermal hot pressing and their properties. Kidorui. 2013;62:78–79.
  • Baker A, Guo H, Guo J, et al. Utilizing the cold sintering process for flexible-printable electroceramic device fabrication. J Am Ceram Soc. 2016;99:3202–3204.
  • Guo H, Baker A, Guo J, et al. Protocol for ultralow-temperature ceramic sintering: an integration of nanotechnology and the cold sintering process. ACS Nano. 2016;10:10606–10614.
  • Guo J, Guo H, Baker AL, et al. Cold sintering: a paradigm shift for processing and integration of ceramics. Angew Chemie – Int Ed. 2016;55:11457–11461.
  • Guo J, Berbano SS, Guo H, et al. Cold sintering process of composites: bridging the processing temperature gap of ceramic and polymer materials. Adv Funct Mater. 2016;26:7115–7121.
  • Bouville F, Studart AR. Geologically-inspired strong bulk ceramics made with water at room temperature. Nat Commun. 2017;8:14655.
  • Guo J, Baker AL, Guo H, et al. Cold sintering process: a new era for ceramic packaging and microwave device development. J Am Ceram Soc. 2017;100:669–677.
  • Berbano SS, Guo J, Guo H, et al. Cold sintering process of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte. J Am Ceram Soc. 2017;100:2123–2135.
  • Funahashi S, Guo H, Guo J, et al. Cold sintering and co-firing of a multilayer device with thermoelectric materials. J Am Ceram Soc. 2017;100:3488–3496.
  • Väätäjä M, Kähäri H, Ohenoja K, et al. 3D printed dielectric ceramic without a sintering stage. Sci Rep. 2018;8:15955.
  • Miao Y, Du P, Wang Z, et al. Ultrasonic vibration imposed on nanoparticle-based ZnO film improves the performance of the ensuing perovskite solar cell. Mater Res Express. 2018;5:026404/1–026404/10.
  • Bang SH, De Beauvoir TH, Randall CA. Densification of thermodynamically unstable tin monoxide using cold sintering process. J Eur Ceram Soc. 2019;39:1230–1236.
  • Nayir S, Waryoba DR, Rajagopalan R, et al. Cold sintering of a covalently bonded MoS2/graphite composite as a high capacity Li–ion electrode. Chem Nano Mat. 2018;4:1088–1094.
  • Guo J, Legum B, Anasori B, et al. Cold sintered ceramic nanocomposites of 2D MXene and zinc oxide. Adv Mater (Weinheim. Ger). 2018;30, n/a.
  • Taveri G, Grasso S, Gucci F, et al. Bio-inspired hydro-pressure consolidation of silica. Adv Funct Mater. 2018;28, n/a.
  • Yamasaki N, Yanagisawa K, Nishioka M, et al. A hydrothermal hot-pressing method: apparatus and application. J Mater Sci Lett. 1986;5:355–356.
  • Riman IRE, Mead B, Examiner P, et al. Phase sintering of Ceramc Ee 7386 E. US Pat. 8,313,802 2012.
  • Randall CA, Guo J, Baker A, et al. Cold sintering ceramics and composites. U.S. Pat. Appl. Publ. 2017, 24 pp., Cont. of Appl. No. PCT/US2016/053772.
  • Gutmanas EY. Design of alloys and materials using cold sintering. In Proceedings of the Modern Developments in Powder Metallurgy; 1985.
  • Sun P, Wu HC. Splitting tensile strength of fly ash activated by hydrothermal hot-pressing process. J Mater Civ Eng. 2009;21:356–361.
  • Yanagisawa K, Ioku K, Yamasaki N. Crystallization of amorphous hydrous titania under hydrothermal hot-pressing conditions. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal Ceram Soc Japan. 1994;102:1091–1093.
  • Baker A, Guo H, Guo J, et al. Utilizing the cold sintering process for flexible–printable electroceramic device fabrication. J Am Ceram Soc. 2016;99:3202–3204.
  • Toraya H, Yoshimura M, Somiya S. Hydrothermal reaction-sintering of monoclinic HfO2. J Am Ceram Soc. 1982;65:c159–c160.
  • Vakifahmetoglu C, Anger JF, Atakan V, et al. Reactive hydrothermal liquid-phase densification (rHLPD) of ceramics – a study of the BaTiO3[TiO2] composite system. J Am Ceram Soc. 2016;99:3893–3901.
  • Schiedt VU, Reinwein H. Zur Infrarot-Spektroskopie von Aminosäuren I. Mitt.: Eine neue Präparationstechnik zur Infrarot-Spektroskopie von Aminosäuren und anderen polaren Verbindungen. Zeitschrift für Naturforschung B. 1952;7:270–277.
  • Stimson MM, O’Donnell MJ. The infrared and ultraviolet absorption spectra of cytosine and isocytosine in the solid state. J Am Chem Soc. 1952;74:1805–1808.
  • Gotman I, Gutmanas EY. Joining of P/M high speed tool steel with cobalt and ferrous alloys by high pressure consolidation. In Proc Horiz Powder Metall Proc Int Powder Metall Conf Exhib; Schmid, 1986; Vol. 2, pp. 703–706.
  • Gutmanas EY, Goldman DB, Hart S, et al. Cold sintered 4640 Steel-vanadium carbide composites. In Proc Powder Metall Int; Schmid. 1986;2:1083–1086.
  • Gutmanas EY, Zak D. Mechanical behavior of cold-sintered high-speed steel-carbides composites. Mod Dev Powder Metall. 1988;20:421–429.
  • Dariel MP, Ratzker M, Eichmiller FC. Acid-assisted consolidation of powder compacts: cold-welding or cold sintering. J Mater Sci. 1999;34:2601–2607.
  • Glenn L. Beane PM ‘cold forming’ process eliminates sintering. Met Powder Rep. 1996;51:5.
  • Roy DM, Gouda GR. Porosity-strength relation in cementitious materials with very high Strengths. J Am Ceram Soc. 1973;56:549–550.
  • Sōmiya S, Hirano S, Yoshimura M, et al. Hydrothermal reaction sintering of Cr2O3 and iron oxides. In Proceedings of the Hydrothermal Reactions for Materials Science and Engineering; Gakujutsu Bunken Fukyu-kai, 1989; p. 4–14.
  • Yamasaki N, Yanagisawa K, Feng Q. Hydrothermal process. Seramikkusu. 1999;34:377–382.
  • Medri V, Servadei F, Bendoni R, et al. Nano-to-macroporous TiO2 (anatase) by cold sintering process. J Eur Ceram Soc. 2019;39:2453–2462.
  • Nishizawa H, Tebika H, Yamasaki N. Fabrication of stabilized zirconia compressed body under hydrothermal conditions and its sintering. Yogyo Kyokaishi. 1984;92:420–421.
  • Ndayishimiye A, Largeteau A, Prakasam M, et al. Low temperature hydrothermal sintering process for the quasi-complete densification of nanometric α-quartz. Scr Mater. 2018;145:118–121.
  • Ndayishimiye A, Largeteau A, Mornet S, et al. Hydrothermal sintering for densification of silica. Evidence for the role of water. J Eur Ceram Soc. 2018;38:1860–1870.
  • Costa TMHH, Gallas MR, Benvenutti EV, et al. Infrared and thermogravimetric study of high pressure consolidation in alkoxide silica gel powders. J Non Cryst Solids. 1997;220:195–201.
  • Katsuyama S, Takiguchi Y, Ito M. Synthesis of Ca3Co4O9 ceramics by polymerized complex and hydrothermal hot-pressing processes and investigation of its thermoelectric properties. Int Conf Thermoelectr ICT Proc. 2007;43:103–107.
  • Onoda H, Yamasaki T. Synthesis of bulk lanthanum polyphosphate and other rare earth phosphates through hydrothermal hot-pressing. J Adv Ceram. 2013;2:301–307.
  • Nishioka M, Yamasaki N, Amano H, et al. Immobilization of tritiated water by hydrothermal hot-pressing. Waste Manag. 1992;12:373–378.
  • Nishioka M, Yamasaki N. Immobilization of cesium into pollucite structure by hydrothermal hot-pressing. J Nucl Sci Technol. 1987;24:51–60.
  • Ioku K, Yamamoto K, Yanagisawa K, et al. Low temperature sintering of hydroxyapatite by hydrothermal Hot-pressing. Phosphorus Res Bull. 1994;4:65–70.
  • Khelifi O, Kozuki Y, Murakami H, et al. Development of a new porous carrier for ammonium removal as innovative uses for waste materials. J Solid Waste Technol Manag. 2003;29:118–126.
  • Nakahira A, Takezoe S, Yamasaki Y. Synthesis of dense Y-zeolite bulks with large surface area using a hydrothermal hot-pressing (HHP) process. Chem Lett. 2004;33:1400–1401.
  • Takimura M, Nagata H, Yamasaki Y, et al. Synthesis and characterization of bulky FSM with interconnected mesopore-networks using an HHP method. J Ceram Soc Japan. 2006;114:554–557.
  • Nagata H, Hirao N, Onoki T, et al. Synthesis and characterization of bulky mesoporous silica Pd-MCM-41. J Ceram Soc Japan. 2008;116:216–219.
  • Luukkonen T, Abdollahnejad Z, Yliniemi J, et al. One-part alkali-activated materials: a review. Cem Concr Res. 2018;103:21–34.
  • Yamasaki N. Development of recycling technologies, and functional material formation by hydrothermal processes. J Ceram Soc Japan. 2003;111:709–715.
  • Nishioka M, Yanagisawa K, Yamasaki N. Solidification of sludge ash by hydrothermal hot-pressing. Res J Water Pollut Control Fed. 1991;62:926–932.
  • Nishioka M, Yamasaki N. Fundamental study of the recycling of sludge ash by a hydrothermal reaction. Ueisuto Risosu. 1993;27:11–15.
  • Veloza ZM, Yanagizawa K, Yamasaki N. Recycling waste glasses by means of the hydrothermal hot pressing method. J Mater Sci Lett. 1999;18:1811–1813.
  • Yanagisawa K, Matamoros-Veloza Z, Rendón-Angeles JC, et al. Novel route for recycling of steelmaking slag by means of the hydrothermal hot-pressing method. J Mater Sci Lett. 2002;21:693–695.
  • Hirai N, Maeda S, Katsuyama S, et al. Fabrication of porous solidified materials from blast furnace slag using hydrothermal hot-pressing method and measurement of thermal conductivity of solidified materials. Tetsu to Hagane. 2009;95:1–6.
  • Matamoros-Veloza Z, Rendón-Angeles JC, Yanagisawa K, et al. Preparation of foamed glasses from CRT TV glass by means of hydrothermal hot-pressing technique. J Eur Ceram Soc. 2008;28:739–745.
  • Xue F, Song H, Ji Y, et al. Hydrothermal hot-pressing solidification of coal fly ash and its ability of fixing heavy metal. J Residuals Sci Technol. 2015;12:143–148.
  • Song H, Wei L, Ji Y, et al. High-strength solidification of fly ash/carbide slag and its fixing ability for heavy metals. J Residuals Sci Technol. 2017;14:155–160.
  • Matamoros-Veloza Z, Yanagisawa K, Rendón-Angeles JC, et al. Preparation of porous materials from hydrothermally hot pressed glass compacts. J Mater Sci Lett. 2002;21:1855–1858.
  • Matamoros-Veloza Z, Yanagisawa K, Rendón-Angeles JC, et al. The effect of hydrothermal hot-pressing parameters on the fabrication of porous ceramics using waste glass. J Phys Condens Matter. 2004;16:S1361–S1372.
  • Yamasaki N, Yamasaki Y, Tohji K, et al. Hydrothermal dynamics on environmental problems using the aspect of earth science. J Mater Sci. 2006;41:1599–1604.
  • Onoki T, Tanaka M, Hashida T. New processing method for hydroxyapatite coating by hydrothermal techniques. Funtai Oyobi Funmatsu Yakin. 2005;52:861–864.
  • Li JG, Hashida T. In situ formation of hydroxyapatite-whisker ceramics by hydrothermal hot-pressing method. J Am Ceram Soc. 2006;89:3544–3546.
  • Ishihara S, Matsumoto T, Onoki T, et al. New concept bioceramics composed of octacalcium phosphate (OCP) and dicarboxylic acid-intercalated OCP via hydrothermal hot-pressing. Mater Sci Eng C. 2009;29:1885–1888.
  • Onoki T, Nakahira A, Tago T, et al. Novel low temperature processing techniques for apatite ceramics and chitosan polymer composite bulk materials and its mechanical properties. Appl Surf Sci. 2012;262:263–266.
  • Irie A, Ohno J, Hayakawa T, et al. Transparent film formation of DNA/cationic polymer complexes by hydrothermal hot pressing: observation of cell culture on films and biodegradation of films in vivo. J Hard Tissue Biol. 2013;22:105–114.
  • Udawatte CP, Yanagisawa K, Kamakura T, et al. Solidification of xonotlite fibers with chitosan by hydrothermal hot pressing. Mater Lett. 2000;45:298–301.
  • Udawatte CP, Yanagisawa K, Kamakura T, et al. Hardening of hydrothermal hot pressed calcium silicate compacts with rice husk as fiber reinforcement. Mater Res Innov. 2000;3:297–301.
  • Sun P, Wu HC. Transition from brittle to ductile behavior of fly ash using PVA fibers. Cem Concr Compos. 2008;30:29–36.
  • Liu X. Preparation of γ-Al2O3 porous nanosolid/fluorescein fluorescent nanocomposites by a simple method. Mater Sci Eng B Solid-State Mater Adv Technol. 2010;175:86–89.
  • Xie Y, Yin S, Yamane H, et al. Low temperature sintering and color of a new compound Sn1.24Ti1.94O3.66(OH)1.50F1.42. Solid State Sci. 2009;11:1703–1708.
  • Kubo T, Nakahira A, Yamasaki Y. Fabrication of mesoporous bulk composed of titanate nanotubes by hydrothermal hot-pressing technique. J Mater Res. 2007;22:1286–1291.
  • Nelo M, Peräntie J, Siponkoski T, et al. Upside-down composites: electroceramics without sintering. Appl Mater Today. 2019;15:83–86.
  • Kähäri H, Teirikangas M, Juuti J, et al. Improvements and modifications to room-temperature fabrication method for dielectric Li2MoO4 ceramics. J Am Ceram Soc. 2015;98:687–689.
  • Jiang A, Ke D, Xu L, et al. Cold hydrostatic sintering: from shaping to 3D printing. J Materiomics. 2019;5:496–501.
  • Guo H, Baker A, Guo J, et al. Cold sintering process: a novel technique for low-temperature ceramic processing of ferroelectrics. J Am Ceram Soc. 2016;99:3489–3507.
  • Maria JP, Kang X, Floyd RD, et al. Cold sintering: current status and prospects. J Mater Res. 2017;32:3205–3218.
  • Zhao Y, Berbano SS, Gao L, et al. Cold-sintered V2O5-PEDOT:PSS nanocomposites for negative temperature coefficient materials. J Eur Ceram Soc. 2019;39:1257–1262.
  • Ma J, Li H, Wang H, et al. Composition, microstructure and electrical properties of K0.5Na0.5NbO3 ceramics fabricated by cold sintering assisted sintering. J Eur Ceram Soc. 2019;39:986–993.
  • Huang HQ, Tang J, Liu J. Preparation of Na0.5Bi0.5TiO3 ceramics by hydrothermal-assisted cold sintering. Ceram Int. 2019;45:6753–6758.
  • Wang D, Zhou D, Zhang S, et al. Cold-sintered temperature stable Na0.5Bi 0.5MoO4-Li2MoO4 microwave composite ceramics. ACS Sustain Chem Eng. 2018;6:2438–2444.
  • Guo J, Pfeiffenberger N, Beese A, et al. Cold sintering Na2Mo2O7 ceramic with poly(ether imide) (PEI) polymer to realize high-performance composites and integrated multilayer circuits. ACS Appl Nano Mater. 2018;1:3837–3844.
  • Induja IJ, Sebastian MT. Microwave dielectric properties of mineral sillimanite obtained by conventional and cold sintering process. J Eur Ceram Soc. 2017;37:2143–2147.
  • Hong WB, Li L, Cao M, et al. Plastic deformation and effects of water in room-temperature cold sintering of NaCl microwave dielectric ceramics. J Am Ceram Soc. 2018;101:4038–4043.
  • Li L, Hong WB, Yang S, et al. Effects of water content during cold sintering process of NaCl ceramics. J Alloys Compd. 2019;787:352–357.
  • Induja IJ, Sebastian MT. Microwave dielectric properties of cold sintered Al2O3-NaCl composite. Mater Lett. 2018;211:55–57.
  • Liu Y, Liu P, Hu C. Low-temperature preparation and microwave dielectric properties of cold sintered Li2Mg3TiO6 nanocrystalline ceramics. Ceram Int. 2018;44:21047–21052.
  • Kang X, Floyd R, Lowum S, et al. Cold sintering with dimethyl sulfoxide solutions for metal oxides. J Mater Sci. 2019;54:7438–7446.
  • Zhao X, Guo J, Wang K, et al. Introducing a ZnO–PTFE (polymer) nanocomposite varistor via the cold sintering process. Adv Eng Mater. 2018;20, n/a.
  • Jing Y, Luo N, Wu S, et al. Remarkably improved electrical conductivity of ZnO ceramics by cold sintering and post-heat-treatment. Ceram Int. 2018;44:20570–20574.
  • Nie J, Zhang Y, Chan JM, et al. Water-assisted flash sintering: flashing ZnO at room temperature to achieve ∼98% density in seconds. Scr Mater. 2018;142:79–82.
  • Lowum S, Floyd R, Bermejo R, et al. Mechanical strength of cold-sintered zinc oxide under biaxial bending. J Mater Sci. 2019;54:4518–4522.
  • Guo J, Guo H, Heidary DSB, et al. Semiconducting properties of cold sintered V2O5 ceramics and co-sintered V2O5-PEDOT:PSS composites. J Eur Ceram Soc. 2017;37:1529–1534.
  • Nakaya H, Iwasaki M, de Beauvoir TH, et al. Applying cold sintering process to a proton electrolyte material: CsH2PO4. J Eur Ceram Soc. 2019;39:396–401.
  • Liu Y, Sun Q, Wang D, et al. Development of the cold sintering process and its application in solid-state lithium batteries. J Power Sources. 2018;393:193–203.
  • Lee W, Lyon CK, Seo J-H, et al. Ceramic-Salt composite electrolytes from cold sintering. Adv Funct Mater. 2019;29:1807872.
  • Pereira da Silva JG, Bram M, Laptev AM, et al. Sintering of a sodium-based NASICON electrolyte: a comparative study between cold, field assisted and conventional sintering methods. J Eur Ceram Soc. 2019;39:2697–2702.
  • Leng H, Huang J, Nie J, et al. Cold sintering and ionic conductivities of Na3.256Mg0.128Zr1.872Si2PO12 solid electrolytes. J Power Sources. 2018;391:170–179.
  • Liu Y, Liu J, Sun Q, et al. Insight into the microstructure and ionic conductivity of cold sintered NASICON solid electrolyte for solid-state batteries. ACS Appl Mater Interfaces. 2019;11:27890–27896.
  • Berbano SS, Guo J, Guo H, et al. Cold sintering process of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte. J Am Ceram Soc. 2017;100:2123–2135.
  • Seo JH, Guo J, Guo H, et al. Cold sintering of a Li-ion cathode: LiFePO4-composite with high volumetric capacity. Ceram Int. 2017;43:15370–15374.
  • Seo J-HH, Verlinde K, Guo J, et al. Cold sintering approach to fabrication of high rate performance binderless LiFePO4cathode with high volumetric capacity. Scr Mater. 2018;146:267–271.
  • Heidary DSB, Guo J, Seo JH, et al. Microstructures and electrical properties of V2O5 and carbon-nanofiber composites fabricated by cold sintering process. Jpn J Appl Phys. 2018;57:025702/1–025702/6.
  • Pearson RG. Hard and soft acids and bases. J Am Chem Soc. 1963;85:3533–3539.
  • Pearson RG. Recent advances in the concept of hard and soft acids and bases. J Chem Educ. 1987;64:561.
  • Lee LH. Applications of the hard-soft acid-base (HSAB) principle to solid adhesion and surface tribointeractions. In Surfactants and macromolecules: self-assembly at interfaces and in bulk. 2008.
  • Lee L-H. Hard–soft acid–base (HSAB) principle for solid adhesion and surface interactions. In Fundamentals of adhesion. New York; 2013.
  • Slack JMW. Molecular biology of the cell. Principles of tissue engineering; 2014. p. 127–145.
  • Schmuckler JS. Solubility product constant, Ksp. J Chem Educ. 2009.
  • Pichtel J. Solubility product constants at 25 °C. Waste Manag Prac. 2014: 631–634.
  • Wagle DV, Baker GA. Cold welding: a phenomenon for spontaneous self-healing and shape genesis at the nanoscale. Mater Horizons. 2015;2:157–167.
  • Mehrer H. Diffusion in solids. Springer Ser Solid-State Sci. 2007. Available from: https://www.springer.com/gp/book/9783540714866
  • Takigawa R, Higurashi E, Asano T. Room-temperature wafer bonding of LiNbO3 and SiO2 using a modified surface activated bonding method. Jpn J Appl Phys. 2018;57:06HJ12.
  • Ebnesajjad S. Handbook of adhesives and surface preparation. Oxford: Elsevier; 2011.
  • Grasso S, Tsujii N, Jiang Q, et al. Ultra low thermal conductivity of disordered layered p-type bismuth telluride. J Mater Chem C. 2013;1:2362–2367.
  • Gutmanas EY, Lawley A. Cold sintering - a new powder consolidation process. Prog Powder Metall. 1984;39, Technical report.
  • Park S, Han HN, Oh KH, et al. Model for compaction of metal powders. Int J Mech Sci. 1999;41:121–144.
  • Lee DN, Kim HS. Plastic yield behaviour of porous metals. Powder Metall. 1992;35:275–279.
  • Govindarajan RM, Aravas N. Deformation processing of metal powders: part I – cold isostatic pressing. Int J Mech Sci. 2003;36:343–357.
  • Panelli R, Filho FA. Compaction equation and its use to describe powder consolidation behavior. Powder Metall. 1998;41:131–133.
  • Ponraj NV, Azhagurajan A, Vettivel SC. Microstructure, consolidation and mechanical behaviour of Mg/n-TiC composite. Alexandria Eng J. 2016;55:2077–2086.
  • Panelli R, Filho FA. A study of a new phenomenological compacting equation. Powder Technol. 2001;114:255–261.
  • Kawakita K. Some Considerations on powder compression equations. Powder Technol. 1969;4:61–68.
  • Franssen R. Rheology of synthetic rocksalt : with emphasis on the influence of deformation history and geometry on the flow behaviour; [Faculteit Aardwetenschappen der Universiteit Utrecht], 1993; Vol. 113; ISBN 9071577678.
  • Schenk O, Urai JL. Microstructural evolution and grain boundary structure during static recrystallization in synthetic polycrystals of sodium chloride containing saturated brine. Contrib to Mineral Petrol. 2004;146:671–682.
  • Educational poster «Solubility table» – solubility of electrolytes in aqueous solutions.
  • Warren JK. Evaporites a geological compendium; 2016; ISBN 9783319135113.
  • Dean JA. Lange’s handbook of chemistry. London; 1998.
  • Prévost M, Oliveira IT, Kocher JP, et al. Free energy of cavity formation in liquid water and hexane. J Phys Chem. 1996;100:2738–2743.
  • Pagni R. Modern physical organic chemistry (Eric V. Anslyn and Dennis A. Dougherty). J Chem Educ. 2006;83:387.
  • July P. Química Nova review of the synthesis of layered double hydroxides: a thermodynamic approach. Quim Nova. 2015;2:1–21.
  • Cameron FK, Robinson WO. The solubility of calcium carbonate in aqueous solutions of potassium chloride and potassium Sulphate at 25 °. J Phys Chem. 2005;11:577–580.
  • Frear GL, Johnston J. The solubility of calcium carbonate (calcite) in certain aqueous solutions at 25 ° 1. J Am Chem Soc. 1929;51:2082–2093.
  • Morey GW, Fournier RO, Rowe JJ. The solubility of amorphous silica at 25 deg C. J Geophys Res. 1997;102:1995–2002.
  • Wood JA. The solubility of quartz in water at high temperatures and pressures. Am J Sci. 2010;256:40–47.
  • King E. J. the solubility of silica. Lancet. 1938;231:1236–1238.
  • Weng L, Sagoe-Crentsil K, Weng L. Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: part I-Low Si/Al ratio systems. J Mater Sci. 2007;42:2997–3006.
  • Anderson GM, Burnham CW. The solubility of quartz in super-critical water. Am J Sci. 1965;263:494–511.
  • Fournier RO, Potter RW. An equation correlating the solubility of quartz in water from 25 ° to 900 °C at pressures up to 10,000 bars. Geochim Cosmochim Acta. 1982;46:1969–1973.
  • Young JA. Sodium chloride; 2009; 84.
  • Sole MJ. Hydrolysis of sodium chloride. Trans Faraday Soc. 1970;66:3065–3074.
  • Reynolds DA, Herting DL. Solubilities of sodium nitrate, sodium nitrite, and sodium aluminate in simulated nuclear waste. 1984.
  • American elements safety data sheet – tungsten nanoparticles; 2015.
  • Lillard RS. The nature of oxide films on tungsten in acidic and alkaline solutions. J Electrochem Soc. 2006;145:2718.
  • Funahashi S, Guo J, Guo H, et al. Demonstration of the cold sintering process study for the densification and grain growth of ZnO ceramics. J Am Ceram Soc. 2017;100:546–553.
  • Eixenberger JE, Anders CB, Hermann RJ, et al. Rapid dissolution of ZnO nanoparticles induced by biological buffers significantly impacts cytotoxicity. Chem Res Toxicol. 2017;30:1641–1651.
  • Reed RB, Ladner DA, Higgins CP, et al. Solubility of nano-zinc oxide in environmentally and biologically important matrices. Environ Toxicol Chem. 2012;31:93–99.
  • Bauer G, Güther V, Hess H, et al. Vanadium and vanadium compounds. Ullmann’s Encycl Ind Chem. 2017: 1–22. DOI:10.1002/14356007.a27_367.pub2
  • Bell RC, Castleman AW, Thorn DL. Vanadium oxide complexes in room-temperature chloroaluminate molten salts. Inorg Chem. 1999;38:5709–5715.
  • Costigan M, Cary R, Dobson S. Vanadium pentoxide and other inorganic vanadium compounds. World Health Organization; 2001.
  • Bruyère VIE, Morando PJ, Blesa MA. The dissolution of vanadium pentoxide in aqueous solutions of oxalic and mineral acids. J Colloid Interface Sci. 1999;209:207–214.
  • Skyllas-Kazacos M, Limantari Y. Kinetics of the chemical dissolution of vanadium pentoxide in acidic bromide solutions. J Appl Electrochem. 2004;34:681–685.
  • Fedoročková A, Raschman P. Effects of pH and acid anions on the dissolution kinetics of MgO. Chem Eng J. 2008;143:265–272.
  • Aphane ME. The hydration of magnesium oxide with different reactivities by water and magnesium acetate, 2007.
  • Macdonald DD, Owen D. The dissolution of magnesium oxide in dilute sulfuric acid. Can J Chem. 1971;49:3375–3380.
  • Prajapati RR, Srinivasan TG, Chandramouli V, et al. Dissolution kinetics of zirconium dioxide in nitric acid. Desalin Water Treat. 2014;52:490–497.
  • Yoshimura M, Hiuga T, Somiya S. Dissolution and reaction of yttria-stabilized zirconia single crystals in hydrothermal solutions. J Am Ceram Soc. 1986;69:583–584.
  • Rosenthal SB. Changing the wetting properties of titanium dioxide surfaces with visible and near infrared light, 2016.
  • Lisoni JG, Lei CH, Hoffmann T, et al. Hydrothermal growth of BaTiO3 on TiO2 single crystals. Surf Sci. 2002;515:431–440.
  • Glebov VA. Effect of ligands on the hydration shell of titanium ions. J Struct Chem. 1971;11:750–754.
  • Pfaff G. BaTiO3 preparation by reaction of TiO2 with Ba(OH)2. J Eur Ceram Soc. 1991;8:35–39.
  • Dadze TP, Kashirtseva GA, Novikov MP, et al. Solubility of MoO3 in acid solutions and vapor-liquid distribution of molybdic acid. Fluid Phase Equilib. 2017;440:64–76.
  • Rempel KU, Williams-Jones AE, Migdisov AA. The solubility of molybdenum dioxide and trioxide in HCl-bearing water vapour at 350 °C and pressures up to 160 bars. Geochim Cosmochim Acta. 2008;72:3074–3083.
  • Rempel KU, Migdisov AA, Williams-Jones AE. The solubility and speciation of molybdenum in water vapour at elevated temperatures and pressures: Implications for ore genesis. Geochim Cosmochim Acta. 2006;70:687–696.
  • Separation M. Membranes and membrane separation processes. Ullmann’s Encycl Ind Chem. 2000;16:1–83.
  • Hurtig NC, Williams-Jones AE. An experimental study of the solubility of MoO3 in aqueous vapour and low to intermediate density supercritical fluids. Geochim Cosmochim Acta. 2014;136:169–193.
  • Barinova OP, Ermochenkov IM, Kuchuk ZS, et al. Growth of Li2MoO4 crystals from activated water solutions. Glas Ceram (English Transl Steklo i Keramika). 2016;72:425–429.
  • Kyarov AA, Karov ZG, Khochuev IY, et al. Solubility and physicochemical properties of lithium molybdate-n-butanol-water solutions at 25 °C. Russ J Inorg Chem. 2007;52:455–459.
  • Willey JD. The effect of pressure on the solubility of minerals in seawater at 0 °C. Mar Chem. 1974;2:239–250.
  • Railsback LB. Railsback – an earth scientists periodic table of the elements and their ions. Geol Soc Am. 2012;31:2012.
  • Richens DT. The chemistry of aqua ions. Chichester; 1997.
  • Glasser L, Jones F. Systematic thermodynamics of hydration (and of solvation) of inorganic solids. Inorg Chem. 2009;48:1661–1665.
  • Moldoveanu SC, David V. Mobile phases and their properties. Essentials Mod HPLC Sep. 2012: 363–447.
  • Archer DG, Wang P. The dielectric constant of water and Debye Hückel limiting law slopes. J Phys Chem Ref Data. 1990;19:371–411.
  • Takeuchi T, Kawamura K. Effect of the crystal structure on the acid dissolution of zirconium oxide. Trans Japan Inst Met. 2014;13:262–264.
  • James WJ, Custeho WG, Stwumanis ME. Dissolution rates, electrochemical and passivation properties of alpha Zr-O solid solutions. Corros Sci. 1962;2:237–254.
  • Haynes WM. CRC handbook of chemistry and physics. 96th ed. Boca Raton: CRC Press; 2015.
  • Hong WB, Li L, Yan H, et al. Cold sintering and microwave dielectric properties of dense HBO2-II ceramics. J Am Ceram Soc. 2019;102:5934–5940.
  • Li M, Lin D, Zhu L. Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environ Pollut. 2013;173:97–102.
  • David C, Cruz-Gonzalez S, Salvador J, et al. Thermodynamics and kinetics of the dissolution of ZnO nanoparticles followed by AGNES. J Phys Chem C. 2012;116:11758–11767.
  • Chu KR, Lee E, Jeong SH, et al. Effect of particle size on the dissolution behaviors of poorly water-soluble drugs. Arch Pharm Res. 2012;35:1187–1195.
  • Mosharraf M, Nyström C. The effect of particle size and shape on the surface specific dissolution rate of microsized practically insoluble drugs. Int J Pharm. 1995;122:35–47.
  • Sun J, Wang F, Sui Y, et al. Effect of particle size on solubility, dissolution rate, and oral bioavailability: evaluation using coenzyme Q10 as naked nanocrystals. Int J Nanomedicine. 2012;7:5733–5744.
  • Lee WE. Ceramic processing and sintering. New York (NY): Marcel Dekker; 2012; Vol. 41.
  • Hosoi K, Kawai S, Yanagisawa K, et al. Densification process for spherical glass powders with the same particle size by hydrothermal hot pressing. J Mater Sci. 1991;26:6448–6452.
  • Gonzalez-Julian J, Neuhaus K, Bernemann M, et al. Unveiling the mechanisms of cold sintering of ZnO at 250 °C by varying applied stress and characterizing grain boundaries by Kelvin probe force microscopy. Acta Mater. 2018;144:116–128.
  • Biesuz M, Taveri G, Duff AI, et al. A theoretical analysis of cold sintering. Adv Appl Ceram. 2019;119:75–89.
  • Gibson RE. General considerations of the effect of pressure on solubility. Eos, Trans Am Geophys Union. 1938;19:273–274.
  • Bateman LA, Fernelius WC. Demostration of a negative temeprature coefficient of solubility. J Cem Educ. 14AD, 315.
  • Sengul MY, Guo J, Randall CA, et al. Water-mediated surface diffusion mechanism enables the cold sintering process: a combined computational and experimental study. Angew Chemie Int Ed. 2019;131:12550–12554.
  • Schutjens PMTM, Spiers CJ. Intergranular pressure solution in NaCl: grain-to-grain contact experiments under the optical microscope. Rev l’Institut Fr du Pet. 1999;54:729–750.
  • Urai JL, Schléder Z, Spiers CJ, et al. Flow and transport properties of salt rocks; 2008; Vol. 60; ISBN 978-3-510-49207-7.
  • Kang S-JL. Liquid phase sintering. New York (NY): Springer Science; 2011; Vol. 39.
  • Doremus RH. Glass science. New York (NY): Physics Today; Wiley; 1994.
  • Carter N, Horseman S, Russell J, et al. Rheology of rocksalt. J Struct Geol. 1993;15:1257–1271.
  • Kingery WD, Woulbroun JM, Charvat FR. Effects of applied pressure on densification during sintering in the presence of a liquid phase. J Am Ceram Soc. 1963;46:391–395.
  • Chen M, Wu S, Xu S, et al. Caking of crystals: characterization, mechanisms and prevention. Powder Technol. 2018;337:51–67.
  • Götze J, Möckel R. Quartz: deposits, mineralogy and analytics. Berlin: Springer; 2012.