Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 119, 2020 - Issue 4
547
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Material removal characteristics of ultra-precision grinding silicon carbide ceramics

, &
Pages 175-182 | Received 09 Oct 2019, Accepted 16 Dec 2019, Published online: 30 Dec 2019

References

  • Li M, Zhou XB, Yang H, et al. The critical issues of SiC materials for future nuclear systems. Scripta Mat. 2018;143:149–153. doi: 10.1016/j.scriptamat.2017.03.001
  • Liu M, Yang Y, Wei YQ, et al. Preparation of dense and high-purity SiC ceramics by pressureless solid-state-sintering. Ceram Int. 2019;45(16):19771–19776. doi: 10.1016/j.ceramint.2019.06.231
  • Zhou BF, Feng KQ, Zhou HL. Joining of SiC ceramic by using the liquid polyvinylphenylsiloxane. Adv Appl Ceram. 2018;117(4):212–216. doi: 10.1080/17436753.2017.1392069
  • Striegler M, Matthey B, Mühle U, et al. Corrosion resistance of silicon-infiltrated silicon carbide (SiSiC). Ceram Int. 2018;44(9):10111–10118. doi: 10.1016/j.ceramint.2018.02.229
  • Guo XZ, Wang R, Zheng P, et al. Pressureless sintering of multilayer graphene reinforced silicon carbide ceramics for mechanical seals. Adv Appl Ceram. 2019;118(7):409–417. doi: 10.1080/17436753.2019.1634942
  • Tam HY, Cheng HB, Wang YW. Removal rate and surface roughness in the lapping and polishing of RB-SiC optical components. J Mater Process Technol. 2007;192–193:276–280. doi: 10.1016/j.jmatprotec.2007.04.091
  • Gu Y, Zhu WH, Lin JQ, et al. Investigation of silicon carbide ceramic polishing by simulation and experiment. Adv Mech Eng. 2017;9(11):1–14. doi: 10.1177/1687814017729090
  • Deng H, Yamamura K. Smoothing of reaction sintered silicon carbide using plasma assisted polishing. Curr Appl Phys. 2012;12:24–28. doi: 10.1016/j.cap.2012.04.004
  • Luo QF, Lu J, Xu XP. Study on the processing characteristics of SiC and sapphire substrates polished by semi-fixed and fixed abrasive tools. Tribol Int. 2016;104:191–203. doi: 10.1016/j.triboint.2016.09.003
  • Liu GL, Huang ZR, Liu XJ, et al. Removal behaviors of different SiC ceramics during polishing. J Mater Sci Technol. 2010;26(2):125–130. doi: 10.1016/S1005-0302(10)60020-5
  • Lu J, Luo QF, Mao XY, et al. Fabrication of a resin-bonded ultra-fine diamond abrasive polishing tool by electrophoretic co-deposition for SiC processing. Precis Eng. 2017;47:353–361. doi: 10.1016/j.precisioneng.2016.09.009
  • Deng H, Hosoya K, Imanishi Y, et al. Electro-chemical mechanical polishing of single-crystal SiC using CeO2 slurry. Electrochem Commun. 2015;52:5–8. doi: 10.1016/j.elecom.2015.01.002
  • Huo FW, Guo DM, Kang RK, et al. Nanogrinding of SiC wafers with high flatness and low subsurface damage. Trans Nonferrous Met Soc China. 2012;22:3027–3033. doi: 10.1016/S1003-6326(11)61566-5
  • Li ZP, Zhang FH, Zhang Y, et al. Experimental investigation on the surface and subsurface damages characteristics and formation mechanisms in ultra-precision grinding of SiC. Int J Adv Manuf Technol. 2017;92(5–8):2677–2688. doi: 10.1007/s00170-017-0267-4
  • Pan JS, Zhang XW, Yan QS, et al. Experimental study of surface performance of monocrystalline 6H-SiC substrates in plane grinding with a metal-bonded diamond wheel. Int J Mach Tools Manuf. 2017;89(1–4):619–627.
  • Geng QD, Wang W. Experimental study on planetary electric discharge machining of substrate of large-aperture silicon carbide (SiC) mirrors. Int J Adv Manuf Technol. 2018;94:711–717. doi: 10.1007/s00170-017-0933-6
  • Beaucamp A, Simon P, Charlton P, et al. Brittle-ductile transition in shape adaptive grinding (SAG) of SiC aspheric optics. Int J Mach Tools Manuf. 2017;115:29–37. doi: 10.1016/j.ijmachtools.2016.11.006
  • Yan JW, Zhang ZY, Kuriyagawa T. Mechanism for material removal in diamond turning of reaction-bonded silicon carbide. Int J Mach Tools Manuf. 2009;49(5):366–374. doi: 10.1016/j.ijmachtools.2008.12.007
  • Zhong Z, Venkatesh VC. Surface integrity studies on the grinding, lapping and polishing processes for optical products. J Mater Process Technol. 1994;44(3–4):179–186. doi: 10.1016/0924-0136(94)90430-8
  • Agarwal S. Optimizing machining parameters to combine high productivity with high surface integrity in grinding silicon carbide ceramics. Ceram Int. 2016;42:6244–6262. doi: 10.1016/j.ceramint.2016.01.008
  • Jiang C, Cheng JY, Wu T. Theoretical model of brittle material removal fraction related to surface roughness and subsurface damage depth of optical glass during precision grinding. Precis Eng. 2017;49:421–427. doi: 10.1016/j.precisioneng.2017.04.004
  • Li SY, Wang Z, Wu YL. Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes. J Mater Process Technol. 2008;205:34–41. doi: 10.1016/j.jmatprotec.2007.11.118
  • Wu CJ, Li BZ, Liu Y, et al. Surface roughness modeling for grinding of silicon carbide ceramics considering co-existence of brittleness and ductility. Int J Mech Sci. 2017;133:167–177. doi: 10.1016/j.ijmecsci.2017.07.061
  • Bifano TG, Dow TA, Scattergood RO. Ductile-regime grinding – a new technology for machining brittle materials. J Eng Ind Trans ASME. 1991;113:184–189. doi: 10.1115/1.2899676
  • Yin L, Vancoille EYJ, Lee LC, et al. High-quality grinding of polycrystalline silicon carbide spherical surfaces. Wear. 2004;256:197–207. doi: 10.1016/S0043-1648(03)00406-X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.