Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 119, 2020 - Issue 4
367
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

Calculation method and its application for energy consumption of ball mills in ceramic industry based on power feature deployment

, &
Pages 183-194 | Received 10 Apr 2019, Accepted 17 Feb 2020, Published online: 26 Feb 2020

References

  • Sun W, Yue X, Wang Y, et al. Energy and exergy recovery from exhaust hot water using organic Rankine cycle and a retrofitted configuration. J Central South Univ. 2018;25(6):1464–1474. doi: 10.1007/s11771-018-3840-6
  • Sun W, Wang Y, Zhang F, et al. Dynamic allocation of surplus by-product gas in a steel plant by dynamic programming with a reduced state space algorithm. Eng Optim. 2018;50(9):1578–1592. doi: 10.1080/0305215X.2017.1402013
  • Zheng J, Huang B, Zhou X. A low carbon process design method of sand casting based on process design parameters. J Clean Prod 2018;197:1408–1422. doi: 10.1016/j.jclepro.2018.06.285
  • Cai W, Li L, Jia S, et al. Task-oriented energy benchmark of machining systems for energy-efficient production. Int J Precis Eng Manuf Green Technol. 2020;7(1):205–218. doi: 10.1007/s40684-019-00137-x
  • Ding K, Chan FTS, Zhang X, et al. Defining a digital twin-based cyber-physical production system for autonomous manufacturing in smart shop floors. Int J Prod Res. 2019;57(20):6315–6334. doi: 10.1080/00207543.2019.1566661
  • Huang Y, Luo J, Xia B. Application of cleaner production as an important sustainable strategy in the ceramic tile plant – a case study in Guangzhou, China. J Clean Prod 2013;43:113–121. doi: 10.1016/j.jclepro.2012.12.013
  • Ciacco EFS, Rocha JR, Coutinho AR. The energy consumption in the ceramic tile industry in Brazil. Appl Therm Eng. 2017;113:1283–1289. doi: 10.1016/j.applthermaleng.2016.11.068
  • Zhang Y, Ma S, Yang H, et al. A big data driven analytical framework for energy-intensive manufacturing industries. J Clean Prod. 2018;197:57–72. doi: 10.1016/j.jclepro.2018.06.170
  • Li H, Yang H, Yang B, et al. Modelling and simulation of energy consumption of ceramic production chains with mixed flows using hybrid Petri nets. Int J Prod Res. 2018;56(8):3007–3024. doi: 10.1080/00207543.2017.1391415
  • Weerasekara NS, Liu LX, Powell MS. Estimating energy in grinding using DEM modelling. Miner Eng. 2016;85:23–33. doi: 10.1016/j.mineng.2015.10.013
  • Yu P, Xie W, Liu LX, et al. Analytical solution for the dynamic model of tumbling mills. Powder Technol. 2018;337:111–118. doi: 10.1016/j.powtec.2017.04.035
  • Breitung-Faes S, Kwade A. Mill, material, and process parameters – A mechanistic model for the set-up of wet-stirred media milling processes. Adv Powder Technol. 2019;30(8):1425–1433. doi: 10.1016/j.apt.2019.04.013
  • Burmeister C, Titscher L, Breitung-Faes S, et al. Dry grinding in planetary ball mills: Evaluation of a stressing model. Adv Powder Technol. 2018;29(1):191–201. doi: 10.1016/j.apt.2017.11.001
  • Shi F, Xie W. A specific energy-based ball mill model: from batch grinding to continuous operation. Miner Eng. 2016;86:66–74. doi: 10.1016/j.mineng.2015.12.004
  • Cleary PW. Ball motion, axial segregation and power consumption in a full scale two chamber cement mill. Miner Eng. 2009;22(9):809–820. doi: 10.1016/j.mineng.2009.02.005
  • Madlool NA, Saidur R, Hossain MS, et al. A critical review on energy use and savings in the cement industries. Renew Sust Energ Rev. 2011;15(4):2042–2060. doi: 10.1016/j.rser.2011.01.005
  • Sabah E, Ozdemir O, Koltka S. Effect of ball mill grinding parameters of hydrated lime fine grinding on consumed energy. Adv Powder Technol. 2013;24(3):647–652. doi: 10.1016/j.apt.2012.12.001
  • Soleymani MM, Fooladi M, Rezaeizadeh M. Experimental investigation of the power draw of tumbling mills in wet grinding. Proc Inst of Mech Eng Part C: J Mech Eng Sci 2016;230(15):2709–2719. doi: 10.1177/0954406215598801
  • Opazo BC, Anibal Valenzuela M. Experimental Evaluation of power Requirements for Wet grinding and Its comparison to Dry grinding. IEEE Trans Ind Appl 2018;54(4):3953–3960. doi: 10.1109/TIA.2018.2821100
  • Cleary PW, Hoyer D. Centrifugal mill charge motion and power draw: comparison of DEM predictions with experiment. Int J Miner Process. 2000;59(2):131–148. doi: 10.1016/S0301-7516(99)00063-0
  • Bian X, Wang G, Wang H, et al. Effect of lifters and mill speed on particle behaviour, torque, and power consumption of a tumbling ball mill: experimental study and DEM simulation. Miner Eng. 2017;105:22–35. doi: 10.1016/j.mineng.2016.12.014
  • Li F, Zhu D. Electric machinery. Beijing: Science Press; 2007.
  • Fitzgerald AE, Kingsley C, Umans SD. Electric machinery. 6th ed. McGraw-Hill Companies, Inc. New York, 2003.
  • Chen TF, Lee DW, Sung CK. An experimental study on transmission efficiency of a rubber V-belt CVT. Mech Mach Theory. 1998;33(4):351–363. doi: 10.1016/S0094-114X(97)00049-9
  • Zhu, X., Handbook of mechanical transmission design. Publishing House of Electronics Industry: Beijing, 2007.
  • Rahaman MN. Ceramic processing. 2nd ed. Boca Raton: CRC Press; 2017.
  • Kuang J, Mei C. Ceramic production technology. Wuhan: Wuhan University of Technology Press; 2013.
  • Saidur R. A review on electrical motors energy use and energy savings. Renew Sust Energ Rev. 2010;14(3):877–898. doi: 10.1016/j.rser.2009.10.018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.