Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 119, 2020 - Issue 7
150
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Low temperature synthesis and dielectric characterisation of La2Mo2O9 ceramic at RF and microwave frequencies

, , , &
Pages 387-392 | Received 19 Dec 2019, Accepted 15 May 2020, Published online: 01 Jun 2020

References

  • Sebastian MT, Ubic R, Jantunen H. Low-loss dielectric ceramic materials and their properties. Int Mater Rev. 2015;60:392–412. doi: 10.1179/1743280415Y.0000000007
  • Manan A, Ullah Z, Ahmad AS, et al. Phase microstructure evaluation and microwave dielectric properties of (1–x) Mg 0.95 Ni 0.05 Ti 0.98 Zr 0.02 O3–xCa 0.6 La 0.8/3 TiO3 ceramics. J Adv Ceram. 2018;7:72–78. doi: 10.1007/s40145-018-0258-4
  • Varghese J, Siponkoski T, Teirikangas M, et al. Structural, dielectric, and thermal properties of Pb free molybdate based ultralow temperature glass. ACS Sustainable Chem Eng. 2016;4:3897–3904. doi: 10.1021/acssuschemeng.6b00721
  • George S, Sebastian MT. Synthesis and microwave dielectric properties of novel temperature stable high Q, Li2ATi3O8 (A=Mg, Zn) ceramics. J Am Ceram Soc. 2010;93:2164–2166. doi: 10.1111/j.1551-2916.2010.03703.x
  • Li CC, Xiang HC, Xu MY, et al. Low-firing and temperature stable microwave dielectric ceramics: Ba2LnV3O11 (Ln= Nd, Sm). J Am Ceram Soc. 2018;101:773–781. doi: 10.1111/jace.15251
  • Zhou D, Guo D, Li WB, et al. Novel temperature stable high-ε r microwave dielectrics in the Bi2 O3–TiO2–V2O5 system. J Mater Chem C. 2016;4:5357–5362. doi: 10.1039/C6TC01431C
  • Li CC, Xiang HC, Xu MY, et al. Li2AGeO4 (A = Zn, Mg): Two novel low-permittivity microwave dielectric ceramics with olivine structure. J Eur Ceram Soc. 2018;38:1524–1528. doi: 10.1016/j.jeurceramsoc.2017.12.038
  • Song XQ, Du K, Zhang XZ, et al. Crystal structure, phase composition and microwave dielectric properties of Ca3MSi2O9 ceramics. J Alloys Compd. 2018;750:996–1002. doi: 10.1016/j.jallcom.2018.04.044
  • Li CC, Yin CZ, Deng M, et al. Tunable microwave dielectric properties in SrO-V2O5system through compositional modulation. J Am Ceram Soc. 2020;103:2315–2321. doi: 10.1111/jace.16955
  • Song XQ, Du K, Zou ZY, et al. Temperature-stable BaAl2Si2O8–Ba5Si8O21-based low-permittivity microwave dielectric ceramics for LTCC applications. Ceram Int. 2017;43:14453–14456. doi: 10.1016/j.ceramint.2017.07.224
  • Li CC, Yin CZ, Chen JQ, et al. Crystal structure and dielectric properties of germanate melilites Ba2MGe2O7 (M = Mg and Zn) with low permittivity. J Eur Ceram Soc. 2018;38:5246–5251. doi: 10.1016/j.jeurceramsoc.2018.07.020
  • Lan XK, Zou ZY, Lu WZ, et al. Phase transition and low-temperature sintering of Zn(Mn1-Al5)2O4 ceramics for LTCC applications. Ceram Int. 2016;42:17731–17735. doi: 10.1016/j.ceramint.2016.08.098
  • Zhou D, Wang H, Yao X, et al. Microwave dielectric properties of low temperature firing Bi2Mo2O9 ceramic. J Am Ceram Soc. 2010;91:3419–3422. doi: 10.1111/j.1551-2916.2008.02596.x
  • Li CC, Wen WX, Xiang HC, et al. Low temperature sintering and microwave dielectric properties of Zn3Mo2O9 ceramic. J Mater Sci: Mater Electron. 2018;29:1907–1913.
  • Xiang HC, Li CC, Tang Y, et al. Two novel ultralow temperature firing microwave dielectric ceramics LiMVO6 (M = Mo, W) and their chemical compatibility with metal electrodes. J Eur Ceram Soc. 2017;37:3959–3963. doi: 10.1016/j.jeurceramsoc.2017.04.038
  • Lacorre P, Goutenoire F, Bohnke O, et al. Designing fast oxide-ion conductors based on La2Mo2O9. Nature. 2000;404:856–858. doi: 10.1038/35009069
  • Goutenoire F, Isnard O, Retoux R, et al. Crystal structure of La2Mo2O9, a new fast oxide− ion conductor. Chem Mater. 2000;12:2575–2580. doi: 10.1021/cm991199l
  • Arulraj A, Goutenoire F, Tabellout M, et al. Synthesis and characterization of the anionic conductor system La2Mo2O9-0.5 x F x (x= 0.02−0.30). Chem Mater. 2002;14:2492–2498. doi: 10.1021/cm011239x
  • Hakki BW, Coleman PD. A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans Microwave Theor Tech. 1960;8:402–410. doi: 10.1109/TMTT.1960.1124749
  • Courtney WE. Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Trans Microwave Theor Tech. 1970;18:476–485. doi: 10.1109/TMTT.1970.1127271
  • Liu W, Pan W, Luo J, et al. Suppressed phase transition and giant ionic conductivity in La2Mo2O9 nanowires. Nat Commun. 2015;6:8354. doi: 10.1038/ncomms9354
  • Yu CY, Zeng Y, Yang B, et al. Titanium dioxide engineered for near-dispersionless high terahertz permittivity and ultra-low-loss. Sci Rep. 2017;7:6639. doi: 10.1038/s41598-017-07019-9
  • Xiang HC, Li CC, Jantunen H, et al. Ultralow loss CaMgGeO4 microwave dielectric ceramic and its chemical compatibility with silver electrodes for low-temperature cofired ceramic applications. ACS Sustainable Chem Eng. 2018;6:6458–6466. doi: 10.1021/acssuschemeng.8b00220

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.