Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 119, 2020 - Issue 8
267
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Morphological and antibacterial effects of silver, magnesium, silicon and strontium modified calcium phosphate bone cements prepared by the sol–gel method

, & ORCID Icon
Pages 423-433 | Received 14 Jan 2020, Accepted 28 May 2020, Published online: 12 Jun 2020

References

  • Rahaman MN, Day DE, Bal BS, et al. Bioactive glass in tissue engineering. Acta Biomater. 2011;7(6):2355–2373.
  • Choudhary R, Koppala S, Swamiappan S. Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol–gel combustion synthesis. J Asian Ceramic Soc. 2015;3(2):173–177.
  • Liu CC. Magnesium directly stimulates osteoblast proliferation. J. Bone Miner. Res. 1988;3:104.
  • Carlisle EM. Biochemical and morphological changes associated with long bone abnormalities in silicon deficiency. J Nutr. 1980;110(5):1046–1056.
  • Deaza PN, Guitian F, Deaza S. Bioactivity of wollastonite ceramics: in vitro evaluation. Scr. Metall. Mater. 1994;31:1001–1005.
  • Lin KL, Zhai WY, Ni SY, et al. Study of the mechanical property and in vitro biocompatibility of CaSiO3 ceramics. Ceram Int. 2005;31:323–326.
  • Gou ZR, Chang J, Zhai WY. Preparation and characterization of novel bioactive dicalcium silicate ceramics. J Eur Ceram Soc. 2005;25:1507–1514.
  • Wu CT, Chang J, Wang JY, et al. Preparation and characteristics of a calcium magnesium silicate (bredigite) bioactive ceramic. Biomaterials. 2005;26:2925–2931.
  • Wu CT, Chang J. A novel akermanite bioceramic: preparation and characteristics. J. Biomater. Appl. 2006;21:119–129.
  • Meunier PJ, Roux C, Seeman E, et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N. Engl. J. Med. 2004;350:459–468.
  • Fardellone P, Roux C, Fechtenbaum J, et al. Strontium ranelate reduces the risk of vertebral fractures in osteoporotic postmenopausal women whatever the baseline vertebral fracture status. Bone. 2005;36:403.
  • Reginster JY, Seeman E, De Vernejoul MC, et al. Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: treatment of peripheral osteoporosis (TROPOS) study. J. Clin. Endocrinol. Metab. 2005;90:2816–2822.
  • Wu CT, Ramaswamy Y, Kwik D, et al. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties. Biomaterials. 2007;28:3171–3181.
  • Zhang ML, Zhai WY, Lin KL, et al. Synthesis, in vitro hydroxyapatite forming ability, and cytocompatibility of strontium silicate powders. J Biomed Mater Res B: Appl Biomater. 2010;93B:252–257.
  • Gentleman E, Fredholm YC, Jell G, et al. The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials. 2010;31:3949–3956.
  • Kannan S, Goetz-Neunhoeffer F, Neubauer J, et al. Synthesis and structural characterization of strontium – and magnesium-co-substituted β-tricalcium phosphate. Acta Biomater. 2010;6(2):571–576.
  • Boanini E, Gazzano M, Bigi A. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 2010;6(6):1882–1894.
  • Moreira APD, Sader MS, Soares GDDA, et al. Strontium incorporation on microspheres of alginate/β-tricalcium phosphate as delivery matrices. Mater Res. 2014;17(4):967–973.
  • Kim DW, An JS, Cho IS. Effects of Mg and Sr co-addition on the densification and biocompatible properties of calcium pyrophosphate. Ceram Int. 2018;44(8):9689–9695.
  • Gopi D, Shinyjoy E, Kavitha L. Synthesis and spectral characterization of silver/magnesium co-substituted hydroxyapatite for biomedical applications. Spectrochim Acta A. 2014;127:286–291.
  • Marie PJ, Ammann P, Boivin G, et al. Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int. 2001;69:121–129.
  • Schumacher M, Lode A, Helth A, et al. A novel strontium(II)-modified calcium phosphate bone cement stimulates human-bone-marrow-derived mesenchymal stem cell proliferation and osteogenic differentiation in vitro. Acta Biomater. 2013;9:9547–9557.
  • Wong KL, Wong CT, Liu WC, et al. Mechanical properties and in vitro response of strontium-containing hydroxyapatite/polyetheretherketone composites. Biomaterials. 2009;30:3810–3817.
  • Zhou JH, Li B, Lu SM, et al. Regulation of osteoblast proliferation and differentiation by interrod spacing of Sr-HA nanorods on microporous titania coatings. ACS Appl Mater Interfaces. 2013;5:5358–5365.
  • Geng Z, Wang R, Zhuo X, et al. Incorporation of silver and strontium in hydroxyapatite coating on titanium surface for enhanced antibacterial and biological properties. Mater Sci Eng C. 2017;71:852–861.
  • Ravarian R, Moztarzadeh F, Solati-Hashjin M, et al. Synthesis, characterization and bioactivity investigation of bioglass/hydroxyapatite composite. Ceram Int. 2010;36(1):291–297.
  • Duan W, Congqin N, Tingting T. Cytocompatibility and osteogenic activity of a novel calcium phosphate silicate bioceramic: silicocarnotite. J Biomed Mater Res A. 2013;101(7):1955–1961.
  • Bang LT, Kunio I, Othman R. Effect of silicon and heat-treatment temperature on the morphology and mechanical properties of silicon-substituted hydroxyapatite. Ceram Int. 2011;37(8):3637–3642.
  • Palard M, Combes J, Champion E, et al. Effect of silicon content on the sintering and biological behaviour of Ca10 (PO4) 6-x (SiO4) x (OH) 2-x ceramics. Acta Biomater. 2009;5(4):1223–1232.
  • Oudadesse H, Dietrich E, Bui XV, et al. Enhancement of cells proliferation and control of bioactivity of strontium doped glass. Appl Surf Sci. 2011;257(20):8587–8593.
  • Guo D, Xu K, Zhao X, et al. Development of a strontium-containing hydroxyapatite bone cement. Biomaterials. 2005;26(19):4073–4083.
  • Pijocha D, Zima A, Paszkiewicz Z, et al. Physicochemical properties of the novel biphasic hydroxyapatite-magnesium phosphate biomaterial. Acta Bioeng Biomech. 2013;15(3):53–63.
  • Dan-Jae L, Ming-Tzu T, Tzong-Ming S, et al. In vitro antibacterial activity and cytocompatibility of bismuth doped micro-arc oxidized titanium. J Biomater Appl. 2013;27(5):553–563.
  • Galeener FL. Band limits and the vibrational spectra of tetrahedral glasses. Phys Rev B. 1979;19(8):4292.
  • Reid J W, Loughlin T, Sayer M, et al. Synthesis and characterization of single-phase silicon-substituted α-tricalcium phosphate. Biomaterials. 2006;27(15):2916–2925.
  • Vandiver J, Dean D, Patel N, et al. Silicon addition to hydroxyapatite increases nanoscale electrostatic, van der Waals, and adhesive interactions. J Biomed Mater Res A. 2006;78(2):352–363.
  • Marchat D, Zymelka M, Coelho C, et al. Accurate characterization of pure silicon-substituted hydroxyapatite powders synthesized by a new precipitation route. Acta Biomater. 2013;9(6):6992–7004.
  • Choudhary R, Sivasankar K, Sasikumar S. Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol–gel combustion synthesis. J Asian Ceramic Soc. 2015;3(2):173–177.
  • Farzadi A, Bakhshi F, Solati-Hashjin M, et al. Magnesium incorporated hydroxyapatite: synthesis and structural properties characterization. Ceram Int. 2014;40(4):6021–6029.
  • Palard M, Champion E, Foucaud S. Synthesis of silicated hydroxyapatite Ca10(PO4)6-x(SiO4)x(OH)2-x,”. J Solid State Chem. 2008;181(8):1950–1960.
  • Lafon JP, Champion E, Bernache-Assollant D. Processing of AB-type carbonated hydroxyapatite Ca10-(PO4)6-x(CO3)x(OH)2-x-2y(CO3)y ceramics with controlled composition. J Eur Ceram Soc. 2008;28(1):139–147.
  • Vallet-Regi M, Arcos D. Silicon substituted hydroxyapatites. A method to upgrade calciumphosphate based implants. J Mater Chem. 2005;15(15):1509–1516.
  • Bang LT, Long BD, Othman R. Carbonate hydroxyapatite and silicon-substituted carbonate hydroxyapatite: synthesis, mechanical properties, and solubility evaluations. Sci World J. 2014; doi:10.1155/2014/969876.
  • Junjie H, Wan P, Sun Y, et al. Fabrication and evaluation of a bioactive Sr–Ca–P contained micro-arc oxidation coating on magnesium strontium alloy for bone repair application. J Mater Sci Technol. 2016;32(3):233–244.
  • Mahmoudi M, Serpooshan V. Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat. ACS Nano. 2012;6:2656–2664.
  • Nel AE, Mädler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009;8:543–557.
  • Stevanovic M, Uskokovic V, Filipovic M, et al. Composite PLGA/AgNpPGA/AscH nanospheres with combined osteoinductive, antioxidative, and antimicrobial activities. ACS Appl Mater Interfaces. 2013;5:9034–9042.
  • Sun J, Huang QR, Zhou HJ. Synthesis, characterization and antibacterial activity of a new silver(I) complex based on a flexible dicarboxylic acid ligand. J Mol Struct. 2016;1107:116–120.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.