Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 119, 2020 - Issue 7
330
Views
15
CrossRef citations to date
0
Altmetric
Short Communications

Facile approach to enhance the antibacterial activity of ZnO nanoparticles

, , , ORCID Icon, & ORCID Icon
Pages 414-422 | Received 24 Feb 2020, Accepted 28 May 2020, Published online: 09 Jun 2020

References

  • Svahn O, Björklund E. Thermal stability assessment of antibiotics in moderate temperature and subcritical water using a pressurized dynamic flow-through system. Int J Innovat Appl Stud. 2015;11:872–880.
  • Han JH. Antimicrobial food packaging. In: Ahvenainen R, editor. Novel food packaging techniques. Cambridge: Woodhead; 2000. p. 50–70.
  • Salomoni R, Léo P, Montemor AF, et al. Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol Sci Appl. 2017;10:115–121. doi: 10.2147/NSA.S133415
  • Kasi G, Seo J. Influence of Mg doping on the structural, morphological, optical, thermal, and visible-light responsive antibacterial properties of ZnO nanoparticles synthesized via co-precipitation. Mater Sci Eng C. 2019;98:717–725. doi: 10.1016/j.msec.2019.01.035
  • Ma XK, Lee NH, Oh HJ, et al. Surface modification and characterization of highly dispersed silica nanoparticles by a cationic surfactant. Colloids Surf A Physicochem Eng Asp. 2010;358:172–176. doi: 10.1016/j.colsurfa.2010.01.051
  • Kim D, Jeon K, Lee Y, et al. Preparation and characterization of UV-cured polyurethane acrylate/ZnO nanocomposite films based on surface-modified ZnO. Prog Org Coat. 2012;74:435–442. doi: 10.1016/j.porgcoat.2012.01.007
  • Aditya A, Chattopadhyay S, Jha D, et al. Ganguli, zinc oxide nanoparticles dispersed in ionic liquids show high antimicrobial efficacy to skin specific bacteria. ACS Appl Mater Interfaces. 2018;10:15401–15411. doi: 10.1021/acsami.8b01463
  • Luo M, Shen C, Feltis BN, et al. Reducing ZnO nanoparticle cytotoxicity by surface modification. Nanoscale. 2014;6:5791–5798. doi: 10.1039/C4NR00458B
  • Kasi G, Viswanathan K, Seo J. Effect of annealing temperature on the morphology and antibacterial activity of Mg-doped zinc oxide nanorods. Ceram Int. 2019;45:3230–3238. doi: 10.1016/j.ceramint.2018.10.226
  • Hameed ASH, Karthikeyan C, Sasikumar S, et al. Impact of alkaline metal ions Mg2+, Ca2+, Sr2+ and Ba2+ on the structural, optical, thermal and antibacterial properties of ZnO nanoparticles prepared by the co-precipitation method. J Mater Chem B. 2013;1:5950–5962. doi: 10.1039/c3tb21068e
  • Hameed ASH, Karthikeyan C, Kumar VS, et al. Effect of Mg2+, Ca2+, Sr2+ and Ba2+ metal ions on the antifungal activity of ZnO nanoparticles tested against Candida albicans. Mater Sci Eng C. 2015;52:171–177. doi: 10.1016/j.msec.2015.03.030
  • Darr JA, Zhang J, Makwana NM, et al. Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions. Chem Rev. 2017;117:11125–11238. doi: 10.1021/acs.chemrev.6b00417
  • Feng W, Huang P, Wang B, et al. Solvothermal synthesis of ZnO with different morphologies in dimethylacetamide media. Ceram Int. 2016;42:2250–2256. doi: 10.1016/j.ceramint.2015.10.018
  • Čepin M, Jovanovski V, Podlogar M, et al. Amino-and ionic liquid-functionalised nanocrystalline ZnO via silane anchoring – an antimicrobial synergy. J Mater Chem B. 2015;3:1059–1067. doi: 10.1039/C4TB01300J
  • Guérin-Méchin L, Dubois-Brissonnet F, Heyd B, et al. Specific variations of fatty acid composition of Pseudomonas aeruginosa ATCC 15442 induced by quaternary ammonium compounds and relation with resistance to bactericidal activity. J Appl Microbiol. 1999;87:735–742. doi: 10.1046/j.1365-2672.1999.00919.x
  • Botequim D, Maia J, Lino MMF, et al. Nanoparticles and surfaces presenting antifungal, antibacterial and antiviral properties. Langmuir. 2012;28:7646–7656. doi: 10.1021/la300948n
  • Fal HN, Farzaneh F. Synthesis of ZnO nanocrystals with hexagonal (wurtzite) structure in water using microwave irradiation. J Sci I R I. 2006;17(3):231–234.
  • Muthukumar N, Maruthamuthu S, Palaniswamy N. Role of cationic and nonionic surfactants on biocidal efficiency in diesel-water interface. Colloids Surf B Biointerfaces. 2007;57:152–160. doi: 10.1016/j.colsurfb.2007.01.019
  • Mishra R, Mishra S, Upadhyay C, et al. DDAB-triggered, size-sorted, instant phase-switching of silver nanoparticles. Chemistry Select. 2017;2:3028–3034.
  • Botequim D, Maia J, Lino MM, et al. Nanoparticles and surfaces presenting antifungal, antibacterial and antiviral properties. Langmuir. 2012;28(20):7646–7656. doi: 10.1021/la300948n
  • Li X, Zhu D, Wang X, et al. Evaluation on dispersion behavior of the aqueous copper nano-suspensions. J Colloid Interface Sci. 2007;310:456–463. doi: 10.1016/j.jcis.2007.02.067
  • Wang H, Gong X, Guo X, et al. Characterization, release, and antioxidant activity of curcumin-loaded sodium alginate/ZnO hydrogel beads. Int J Biol Macromol. 2019;121:1118–1125. doi: 10.1016/j.ijbiomac.2018.10.121
  • Espitia PJP, Soares NDFF, dos Reis Coimbra JS, et al. Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioproc Tech. 2012;5:1447–1464. doi: 10.1007/s11947-012-0797-6
  • Li YN, Xu WM, Zhang GQ, et al. Effect of coupling agent on nano-ZnO modification and antibacterial activity of ZnO/HDPE nanocomposite films. IOP Conf Ser Mater Sci Eng. 2015;87:012054. doi: 10.1088/1757-899X/87/1/012054
  • Zhang L, Sun X, Song Y, et al. Didodecyldimethylammonium bromide lipid bilayer-protected gold nanoparticles: synthesis, characterization, and self-assembly. Langmuir. 2006;22(6):2838–2843. doi: 10.1021/la052822l
  • Purcar V, Şomoghi R, Niţu SG, et al. The effect of different coupling agents on nano-ZnO materials obtained via the sol–gel process. Nanomaterials. 2017;7:439. doi: 10.3390/nano7120439
  • Pan J, Quan LN, Zhao Y, et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv Mater. 2016;28:8718–8725. doi: 10.1002/adma.201600784
  • Tien HW, Huang YL, Yang SY, et al. Preparation of transparent, conductive films by graphene nanosheet deposition on hydrophilic or hydrophobic surfaces through control of the pH value. J Mater Chem. 2012;22:2545–2552. doi: 10.1039/C1JM14564A
  • Diz M, Manresa A, Pinazo A, et al. Synthesis, surface active properties and antimicrobial activity of new bis quaternary ammonium compounds. J Chem Soc Perkin Trans. 1994;2:1871–1876. doi: 10.1039/p29940001871
  • Gavrilenko EA, Goncharova DA, Lapin IN, et al. Comparative study of physicochemical and antibacterial properties of ZnO nanoparticles prepared by laser ablation of Zn target in water and air. Materials (Basel). 2019;12:186. doi: 10.3390/ma12010186
  • Leung YH, Chan CMN, Ng AMC, et al. Antibacterial activity of ZnO nanoparticles with a modified surface under ambient illumination. Nanotechnology. 2012;23:475703. doi: 10.1088/0957-4484/23/47/475703
  • Mirzaei H, Darroudi M. Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram Int. 2017;43:907–914. doi: 10.1016/j.ceramint.2016.10.051
  • Arakha M, Saleem M, Mallick BC, et al. The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Sci Rep. 2015;5:9578. doi: 10.1038/srep09578
  • Sadeghi K, Thanakkasaranee S, Lim IJ, et al. Calcined marine coral powders as a novel ecofriendly antimicrobial agent. Mater Sci Eng C. 2020;1(107):110193. doi: 10.1016/j.msec.2019.110193
  • Sivakumar P, Lee M, Kim YS, et al. Photo-triggered antibacterial and anticancer activities of zinc oxide nanoparticles. J Mater Chem B. 2018;6:4852–4871. doi: 10.1039/C8TB00948A
  • Kumar R, Umar A, Kumar G, et al. Antimicrobial properties of ZnO nanomaterials. A review. Ceram Int. 2017;43:3940–3961. doi: 10.1016/j.ceramint.2016.12.062

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.