Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 119, 2020 - Issue 8
208
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Advanced iron boride coatings to enhance corrosion resistance of steels in geothermal power generation

Pages 462-481 | Received 11 Jun 2020, Accepted 22 Sep 2020, Published online: 06 Oct 2020

References

  • DiPippo R. Geothermal power plants: evolution and performance assessment. Geothermics. 2015;53:291–307.
  • Finster M, Clark C, Schroeder J, et al. Geothermal produced fluids: characteristics, treatment technologies, and management options. Renew Sust Energ Rev. 2015;50:952–966.
  • Ellis AJ, Mahon WAJ. Chemistry and geological systems. New York (NY): Academic Press; 1977.
  • Miller RL. Chemistry and materials in geothermal systems. In: LA Casper, TR Pinchback, editors. Geothermal scaling and corrosion, 717. Philadelphia (PA): ASTM Special Techn. Publ.; 1980. p. 3–10.
  • Gallup DL. Geochemistry of geothermal fluids and well scales, and potential for mineral recovery. Ore Geol Review. 1998;12:225–236.
  • Mundhenk N, Huttenloch P, Sanjuan B, et al. Corrosion and scaling as interrelated phenomena in and operating geothermal power plant. Corros Sci. 2013;70:17–28.
  • Klapper HS, Baker MM, Baker MP. Scaling and corrosion behavior of metallic materials after long-term exposure to the geothermal fluid of the North German Basin. NACE Intl Corros Conf Ser. 2016;5:3470–3478.
  • Boch R, Leis A, Haslinger E, et al. Scale-fragment formation impairing geothermal energy production: interacting H2S corrosion and CaCO3 crystal growth. Geotherm Energy. 2017;5(4):1–19.
  • Corsi R. Scaling and corrosion in geothermal equipment: problems and preventive measures. Geothermics. 1986;15:839–856.
  • Kaya T, Hoshan P. Corrosion and material selection for geothermal systems. Proceedings World Geothermal Congress 2005; 2005 April 24–29; Antalya, Turkey.
  • Karlsdottir SN. Corrosion, scaling and material selection in geothermal power production. In: A Sayigh, editor. Comprehensive renewable energy. London: Elsevier; 2012. Vol. 7, p. 239–257.
  • Grafen H, Kuron D. Pitting corrosion of stainless steels. Mater Corros. 1996;47:16–26.
  • Bai P, Zheng S, Zhao H, et al. Investigation on the diverse corrosion products on steel in hydrogen sulfide environment. Corros Sci. 2014;87:39–406.
  • Choi YS, Nesic S, Ling S. Effect of H2S on CO2 corrosion of carbon steel in acidic solutions. Electrochim Acta. 2011;56:1752–1760.
  • Linter BR, Burstein GT. Reaction of pipeline steels in carbon dioxide solutions. Corros Sci. 1999;41:117–139.
  • Lopez DA, Perez T, Simison SN. The influence of microstructure and chemical composition of carbon and low alloy steels in CO2 corrosion: a state-of-the-art appraisal. Mater Des. 2003;24:561–575.
  • Anderko A, Sridhar N, Dunn DS. A general model for the repassivation potential as a function of multiples aqueous solution species. Corros Sci. 2004;46:1583–1612.
  • Portier S, Vuataz F-D, Nami P, et al. Chemical stimulation for geothermal wells: experiments on the three-well EGS system at Soultz-sous-Forets, France. Geothermics. 2009;38:349–359.
  • Zarrouk SJ, Woodhurst BC, Morris C. Silica scaling in geothermal heat exchangers and its impact on pressure drop and performance: weirakel binary plant, New Zealand. Geothermics. 2014;51:445–459.
  • Wolframm M, Rauppach K, Thorwart K. New mineral formations and transport of particles in the thermal water loop of geothermal plants in Germany. Z Geol Wiss. 2011;39:213–239.
  • Regenspurg S, Feldbusch E, Byrne J, et al. Mineral precipitation during production of geothermal fluid from a Permian Rotliegend reservoir. Geothermics. 2016;54:122–135.
  • Valdez B, Schorr M, Quitero M, et al. Corrosion and scaling at cerro prieto geothermal field. Anti-Corr Method Mater. 2009;56:28–34.
  • Karlsdottir SN, Ragnarsdottir KR, Thorbjornsson IO, et al. Corrosion testing in superheated geothermal steam in Iceland. Geothermics. 2015;53:281–290.
  • Faes W, Lecompte S, Van Bael J, et al. Corrosion behaviour of different steel types in artificial geothermal fluids. Geothermics. 2019;82:182–189.
  • Thorbjornsson IO, Karlsdottir SN, Einarsson A, et al. Materials for geothermal steam utilization at high temperatures and pressure. Proceedings World Geothermal Congress 2015; 2015 April 19–25; Melbourne, Australia.
  • Lichti KA, Yanagisawa N. Geothermal energy materials and process issues. Proceedings World Geothermal Congress 2015; 2015 April 19–25; Melbourne, Australia.
  • Karlsdottir SN, Thorbjornsson IO. Corrosion testing down-hole in sour high temperature geothermal well in Iceland, NACE Corrosion 2013, paper 2550.
  • Yusoff N, Ko M, Lichti K, et al. Sulfuric acid corrosion of nickel base alloys and tantalum at 225C. 18th International Corrosion Congress; November 2011; Perth, Australia.
  • MacDonald WD, Grauman JS. Development of new titanium alloys for use in aggressive geothermal environments, NACE Corrosion/2019, Paper No. 12871.
  • Muller J, Bilkova K, Genter A, et al. Laboratory results of corrosion tests for EGS Soultz geothermal wells. Proceedings World Geothermal Congress 2010; 2010 April 25–29; Bali, Indonesia.
  • Belas-Dacillo K, de Leon AC, Panopio ACR, et al. Evaluating protective coatings and metal alloys in acidic geothermal fluids using laboratory techniques. Proceedings World Geothermal Congress 2015; 2015 April 19–25; Melbourne, Australia.
  • Schreiber J, Ravier G, Sontot O, et al. In situ material studies at high temperature Skid (HTS) Bypass system of the geothermal power plant in Soultz-Sous-Forets, France. Proceedings, 38th Workshop on Geothermal Reservoir Engineering; 2013 February 11–13; Stanford University, Stanford, CA, SGP-TR-198.
  • Roberge PR. Handbook of corrosion engineering. 2nd ed. New York: McGraw-Hill Education; 2012.
  • Mittemeijer EJ, Somers MAJ, eds. Thermochemical surface engineering of steels, 1st Ed. Cambridge: Elsevier – Woodhead; 2014.
  • Heath GR, Heimgartner P, Irons G, et al. An assessment of thermal spray coating technologies for high temperature corrosion protection. Mater Sci Forum. 1997;251–254:809–816.
  • Cha SC, Gudenau HW, Bayer GT. Comparison of corrosion behaviour of thermal sprayed and diffusion-coated materials. Mater Corros. 2002;53(3):195–205.
  • Movchan BA, Yu YK. High-temperature protective coatings produced by EB-PVD. J Coat Sci Technol. 2014;1(2):96–110.
  • Chicatun F, Cho J, Schaab S, et al. Carbon nanotube deposits and CNT/SiO2 composite coatings by electrophoretic deposition. Adv Appl Ceram. 2007;106(4):186–195.
  • Wang D, Bierwagen GP. Sol–gel coatings on metals for corrosion protection. Prog Org Coat. 2009;64(4):327–338.
  • Musil J, Vlcek J, Zeman P. Hard amorphous nanocomposite coatings with oxidation resistance above 1000°C. Adv Appl Ceram. 2008;107(3):148–154.
  • Davis JR, ed. Surface engineering for corrosion and wear resistance. Materials Park (OH, USA): ASM International and IOM Communications, Maney Publishing; 2001.
  • Dearnley P. Surface engineering with diffusion technologies. In: Dearnley P, editor. Introduction to surface engineering. Cambridge: Cambridge University Press; 2017. p. 35–115.
  • Nicholls JR. Designing oxidation-resistant coatings. JOM. 2000;52:28–35.
  • Bangaru NV, Krutenat RC. Diffusion coatings of steels: formation mechanism and microstructure of aluminized heat-resistant stainless steels. J Vac Sci Technol B. 1984;2(4):806–815.
  • Meier GH, Cheng C, Perlkins RA, et al. Diffusion chromizing of ferrous alloys. Surf Coat Technol. 1989;39–40:53–64.
  • Medvedovski E. Formation of corrosion-resistant thermal diffusion boride coatings. Adv Eng Mater. 2016;18:11–33.
  • Telle R, Sigl LS, Takagi K. Boride-Based hard materials. In: R Riedel, editor. Handbook of ceramic hard materials. Weinheim: Wiley; 2000. p. 802–945.
  • Campos-Silva I, Ortiz-Dominguez M, Bravo-Barcenas O, et al. Formation and kinetics of FeB/Fe2B layers and diffusion zone at the surface of AISI 316 borided steels. Surf Coat Technol. 2010;205(2):403–412.
  • Petrova RS, Suwattananant N, Pallegar KK, et al. Boron coating to combat corrosion and oxidation. Corrosion Rev. 2007;25(5–6):555–570.
  • Tabur M, Izciler M, Gul F, et al. Abrasive wear behaviour of boronized AISI8620 steel. Wear. 2009;266(11-12):1106–1112.
  • Martini C, Palombarini G, Poli G, et al. Sliding and abrasive wear behavior of boride coatings. Wear. 2004;256(6):608–613.
  • Medvedovski E, Chinski F, Stewart J. Wear- and corrosion-resistant boride-based coatings obtained through thermal diffusion CVD processing. Adv Eng Mater. 2014;16:713–728.
  • Matkovich VI, ed. Boron and refractory borides. Berlin: Springer-Verlag; 1977.
  • Samsonov GV, Vinitskii IM. Refractory compounds: handbook, 2nd ed., Metallurgia. Moscow: Metallurgia; 1976; (in Russian).
  • Kunitskii YA, Marek EV. Some physical properties of iron borides. Sov Powder Metall Met Ceram. 1971;10(3):216–218.
  • Gordienko SP. Thermodynamic characteristics of iron subgroup borides. Powder Metall Met Ceram. 2002;41(3-4):169–172.
  • Pomel’nikova AS, Shipko MN, Stepovich MA. Features of structural changes due to the formation of the boride crystal structure in steels. J Surf Invest X-ray, Synchrotron Neutron Tech. 2011;5(2):298–304.
  • Cheetham AK, Day P. Solid state chemistry: techniques. Oxford: Oxford Science Publications; 1991.
  • Donald H, Jenkins B. Thermodynamics of the relationship between lattice energy and lattice enthalpy. J Chem Educ. 2005;82(6):950–952.
  • Medvedovski E, Jiang J, Robertson M. Iron boride-based thermal diffusion coatings for tribo-corrosion oil production applications. Ceram Int. 2016;42:3190–3211.
  • Tomarov GV, Shipkov AA. Erosion-Corrosion of metals in Multicomponent geothermal flows. Therm Eng. 2006;53:188–194.
  • Medvedovski E, Antonov M. Erosion studies of the iron boride coatings for protection of tubing components in oil production, mineral processing and engineering applications. Wear. 2020;452-453:203277.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.