Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 121, 2022 - Issue 2
5,807
Views
13
CrossRef citations to date
0
Altmetric
Review

Processing and properties of high entropy carbides

Pages 57-78 | Received 30 Jul 2021, Accepted 01 Dec 2021, Published online: 17 Dec 2021

References

  • Fahrenholtz WG, Hilmas GE. Ultra-high temperature ceramics: materials for extreme environments. Scr Mater. 2017;129:94–99.
  • SCATTEIA BELLOSI. Luigi, processing and properties of ultra-high temperature ceramics for space applications. Mater Sci Eng A. 2008;485(1):415–421.
  • R LEVINE, Stanley OPILA, Elizabeth J, et al. Evaluation of ultra-high temperature ceramics for aeropropulsion use. J Eur Ceram Soc. 2001;22(14):2757–2767.
  • Sempere J, Nomen R, Serra E, et al. Thermal behavior of oxidation of TiN and TiC nanoparticles. J Therm Anal Calorim. 2010;105(2):719–726.
  • Smith CJ, Yu X-X, Guo Q, et al. Phase, hardness, and deformation slip behavior in mixed HfxTa1-xC. Acta Mater. 2018;145:142–153.
  • Opeka MM, Talmy IG, Wuchina EJ, et al. And oxidation properties of refractory hafnium and zirconium compounds. J Eur Ceram Soc. 1999;19(13):2405–2414.
  • Bowen HK. Basic research needs on high temperature ceramics for energy applications. Material Science & Engineering. 1980;44(1):1–56.
  • Tandon R, Dumm HP, Corral EL, et al. Ultra high temperature ceramics for hypersonic vehicle applications. Ind Heat. 2006;1:36–38.
  • Zhou YJ, Zhang Y, Wang YL, et al. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl Phys Lett. 2007;90(18):253.
  • Yang X, Zhang Y, Liaw PK. Microstructure and compressive properties of NbTiVTaAlx high entropy alloys. Procedia Eng. 2012;36:292–298.
  • Senkov ON, Wilks GB, Scott JM, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics. 2011;19(5):698–706.
  • Senkov ON, Scott JM, Senkova SV, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J Alloys Compd. 2011;509(20):6043–6048.
  • Hsu C-Y, Yeh J-W, Chen S-K, et al. Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition. Metall Mater Trans A. 2004;35(5):1465–1469.
  • Chuang M-H, Tsai M-H, Wang W-R, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 2011;59(16):6308–6317.
  • Chou YL, Wang YC, Yeh JW, et al. Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions. Corros Sci. 2010;52(10):3481–3491.
  • Chen YY, Duval T, Hung UD, et al. Microstructure and electrochemical properties of high entropy alloys – a comparison with type-304 stainless steel. Corros Sci. 2005;47(9):2257–2279.
  • Rost CM, Sachet E, Borman T, et al. Entropy-stabilized oxides. Nat Commun. 2015;6:8485.
  • Harrington TJ, Gild J, Sarker P, et al. Phase stability and mechanical properties of novel high entropy transition metal carbides. Acta Mater. 2019;166:271–280.
  • Xiang H, Xing Y, Dai F-z, et al. High-entropy ceramics: present status, challenges, and a look forward. J Adv Ceram. 2021;10(3):385–441.
  • Oses C, Toher C, Curtarolo S. High-entropy ceramics. Nat Rev Mater. 2020;5(4):295–309.
  • Mayrhofer PH, Kirnbauer A, Ertelthaler P, et al. High-entropy ceramic thin films; a case study on transition metal diborides. Scr Mater. 2018;149:93–97.
  • Gild J, Zhang Y, Harrington T, et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci Rep. 2016;6:37946.
  • Tallarita G, Licheri R, Garroni S, et al. Novel processing route for the fabrication of bulk high-entropy metal diborides. Scr Mater. 2019;158:100–104.
  • Sarker P, Harrington T, Toher C, et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat Commun. 2018;9(1):4980.
  • Castle E, Csanádi T, Grasso S, et al. Processing and properties of high-entropy ultra-high temperature carbides. Sci Rep. 2018;8(1):8609.
  • Peng C, Gao X, Wang M, et al. Diffusion-controlled alloying of single-phase multi-principal transition metal carbides with high toughness and low thermal diffusivity. Appl Phys Lett. 2019;114(1):011905.
  • Wang Y, Csanadi T, Zhang H, et al. Enhanced hardness in high-entropy carbides through atomic randomness. Adv Theory Simul. 2020;3(9).
  • Kaufmann K, Maryanovsky D, Mellor WM, et al. Discovery of high-entropy ceramics via machine learning. Npj Comput Mater. 2020;6(42).
  • Berardan D, Franger S, Meena AK, et al. Room temperature lithium superionic conductivity in high entropy oxides. J Mater Chem A. 2016;4:9536–9541.
  • Jiang S, Hu T, Gild J, et al. A new class of high-entropy perovskite oxides. Scr Mater. 2018;142:116–120.
  • Hong W, Chen F, Shen Q, et al. Microstructural evolution and mechanical properties of (Mg,Co,Ni,Cu,Zn)O high-entropy ceramics. J Am Ceram Soc. 2019;102(4):2228–2237.
  • Rak Z, Rost C, Lim M, et al. Charge compensation and electrostatic transferability in three entropy-stabilized oxides: results from density functional theory calculations. J Appl Phys. 2016;120(9):095105.
  • Yang Y, Ma L, Gan G-Y, et al. Investigation of thermodynamic properties of high entropy (TaNbHfTiZr)C and (TaNbHfTiZr)N. J Alloys Compd. 2019;788:1076–1083.
  • Moskovskikh D, Vorotilo S, Buinevich V, et al. Extremely hard and tough high entropy nitride ceramics. Sci Rep. 2020;10:19874.
  • Dippo OF, Mesgarzadeh N, Harrington TJ, et al. Bulk high-entropy nitrides and carbonitrides. Sci Rep. 2020;10:21288.
  • Qin M, Gild J, Hu C, et al. Dual-phase high-entropy ultra-high temperature ceramics. J Eur Ceram Soc. 2020;40(15):5037–5050.
  • Wen T, Ye B, Nguyen MC, et al. Thermophysical and mechanical properties of novel high-entropy metal nitride-carbides. J Am Ceram Soc. 2020:(103):6475–6489.
  • Zhang R-Z, Gucci F, Zhu H, et al. Data-driven design of ecofriendly thermoelectric high-entropy sulfides. Inorg Chem. 2018;57(20):13027–13033.
  • Cui M, Yang C, Li B, et al. High-entropy metal Sulfide nanoparticles promise high-performance oxygen evolution reaction. Adv Energy Mater. 2021;11(3):2002887.
  • Cedillos-Barraza O, Manara D, Boboridis K, et al. Investigating the highest melting temperature materials: a laser melting study of the TaC-HfC system. Sci Rep. 2016;6:37962.
  • Oyama ST. Introduction to the chemistry of transition metal carbides and nitrides. In: ST Oyama, editor. The chemistry of transition metal carbides and nitrides. Dordrecht: Springer Netherlands; 1996. p. 1–27.
  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299–303.
  • Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511.
  • Zhang LS, Ma GL, Fu LC, et al. Recent progress in high-entropy alloys. Adv Mat Res. 2013;631–632:227–232.
  • Ye B, Wen T, Huang K, et al. First-principles study, fabrication, and characterization of (Hf 0.2 Zr 0.2 Ta 0.2 Nb 0.2 Ti 0.2)C high-entropy ceramic. J Am Ceram Soc. 2019;102(7):4344–4352.
  • Malinovskis P, Fritze S, Riekehr L, et al. Synthesis and characterization of multicomponent (CrNbTaTiW)C films for increased hardness and corrosion resistance. Mater Des. 2018;149:51–62.
  • Zhang H, Hedman D, Feng P, et al. A high-entropy B 4 (HfMo 2 TaTi) C and SiC ceramic composite. Dalton Trans. 2019;48:5161–5157.
  • Yu X-X, Thompson GB, Weinberger CR. Influence of carbon vacancy formation on the elastic constants and hardening mechanisms in transition metal carbides. J Eur Ceram Soc. 2015;35(1):95–103.
  • Yan X, Constantin L, Lu Y, et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity. J Am Ceram Soc. 2018;101(10):4486–4491.
  • Zhou J, Zhang J, Zhang F, et al. High-entropy carbide: A novel class of multicomponent ceramics. Ceram Int. 2018;44(17):22014–22018.
  • Braic V, Vladescu A, Balaceanu M, et al. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings. Surf Coat Technol. 2012;211:117–121.
  • Yang Y, Wang W, Gan G-Y, et al. Structural, mechanical and electronic properties of (TaNbHfTiZr)C high entropy carbide under pressure: Ab initio investigation. Physica B-Condensed Matter. 2018;550:163–170.
  • Feng L, Lee S-H, Wang H, et al. Synthesis and densification of nano-crystalline hafnium carbide powder. J Eur Ceram Soc. 2015;35(15):4073–4081.
  • Feng L, Fahrenholtz WG, Hilmas GE, et al. Synthesis of single-phase high-entropy carbide powders. Scr Mater. 2019;162:90–93.
  • He Y, Peng C, Xin S, et al. Vacancy effect on the preparation of high-entropy carbides. J Mater Sci. 2020;55(16):6754–6760.
  • Wu K-H, Wang Y, Chou K-C, et al. Low-temperature synthesis of single-phase refractory metal compound carbides. Int J Refract Met Hard Mater. 2021;98:105567.
  • Lun F, Kim JM, Lee SH, et al. Synthesis of a fine (Ta 0.8, Hf 0.2)C powder from carbide or oxide powder mixtures. J Am Ceram Soc. 2016;99(4):1129–1132.
  • Li F, Lu Y, Wang X-G, et al. Liquid precursor-derived high-entropy carbide nanopowders. Ceram Int. 2019;45(17):22437–22441.
  • Du B, Liu H, Chu Y. Fabrication and characterization of polymer-derived high-entropy carbide ceramic powders. J Am Ceram Soc. 2020;103(8):4063–4068.
  • Sun Y, Chen F, Qiu W, et al. Synthesis of rare earth containing single-phase multicomponent metal carbides via liquid polymer precursor route. J Am Ceram Soc. 2020.
  • Šolcová P, Nižňanský M, Schulz J, et al. Preparation of high-entropy (Ti, Zr, Hf, Ta, Nb) carbide powder via solution chemistry. Inorg Chem. 2021;60(11):7617–7621.
  • Chicardi E, Garcia-Garrido C, Gotor FJ. Low temperature synthesis of an equiatomic (TiZrHfVNb)C-5 high entropy carbide by a mechanically-induced carbon diffusion route. Ceram Int. 2019;45(17):21858–21863.
  • Chicardi E, Garcia-Garrido C, Hernandez-Saz J, et al. Synthesis of all equiatomic five-transition metals high entropy carbides of the IVB (Ti, Zr, Hf) and VB (V, Nb, Ta) groups by a low temperature route. Ceram Int. 2020;46(13):21421–21430.
  • Ning S, Wen T, Ye B, et al. Low-temperature molten salt synthesis of high-entropy carbide nanopowders. J Am Ceram Soc. 2020;103(3):2244–2251.
  • Braic M, Braic V, Balaceanu M, et al. Characteristics of (TiAlCrNbY)C films deposited by reactive magnetron sputtering. Surf Coat Technol. 2010;204(12-13).
  • Braic V, Balaceanu M, Braic M, et al. Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications. J Mech Behav Biomed Mater. 2012;10:197–205.
  • Braic M, Balaceanu M, Vladescu A, et al. Deposition and characterization of multi-principal-element (CuSiTiYZr)C coatings. Appl Surf Sci. 2013;284:671–678.
  • Braic V, Parau A, Pana I, et al. Effects of substrate temperature and carbon content on the structure and properties of (CrCuNbTiY)C multicomponent coatings. Surf Coat Technol. 2014;258:996–1005.
  • Vladescu A, Titorencu I, Dekhtyar Y, et al. In vitro biocompatibility of Si alloyed multi-principal element carbide coatings. PLoS One. 2016;11(8):e0161151.
  • Liang SC, Tsai DC, Chang ZC, et al. Structural and mechanical properties of multi-element (TiVCrZrHf)N coatings by reactive magnetron sputtering. Appl Surf Sci. 2011;258(1):399–403.
  • Pei YT, Chen CQ, Shaha KP, et al. Microstructural control of TiC/a-C nanocomposite coatings with pulsed magnetron sputtering. Acta Mater. 2008;56(4):696–709.
  • Rost CM, Borman T, Hossain MD, et al. Electron and phonon thermal conductivity in high entropy carbides with variable carbon content. Acta Mater. 2020;196:231–239.
  • Andreyev A, Kartmazov G, Chikryzhov A, et al. Production and mechanical properties of high-entropic carbide based on the TiZrHfVNbTa multicomponent alloy. J Superhard Mater. 2017;39(3):166–171.
  • Kao WH, Su YL, Horng JH, et al. Mechanical, tribological, anti-corrosion and anti-glass sticking properties of high-entropy TaNbSiZrCr carbide coatings prepared using radio-frequency magnetron sputtering. Mater Chem Phys. 2021;268:124741.
  • Wang F, Zhang X, Yan X, et al. The effect of submicron grain size on thermal stability and mechanical properties of high-entropy carbide ceramics. J Am Ceram Soc. 2020;103(8):4463–4472.
  • Demirskyi D, Suzuki TS, Yoshimi K, et al. Synthesis and high-temperature properties of medium-entropy (Ti,Ta,Zr,Nb)C using the spark plasma consolidation of carbide powders. Open Ceramics. 2020;2:100015.
  • Dusza J, Csanádi T, Medveď D, et al. Nanoindentation and tribology of a (Hf-Ta-Zr-Nb-Ti)C high-entropy carbide. J Eur Ceram Soc. 2021;41(11):5417–5426.
  • Dusza J, Švec P, Girman V, et al. Microstructure of (Hf-Ta-Zr-Nb)C high-entropy carbide at micro and nano/atomic level. J Eur Ceram Soc. 2018;38(12):4303–4307.
  • Liu D, Zhang A, Jia J, et al. Phase evolution and properties of (VNbTaMoW)C high entropy carbide prepared by reaction synthesis. J Eur Ceram Soc. 2020;40(8):2746–2751.
  • Moskovskikh DO, Vorotilo S, Sedegov AS, et al. High-entropy (HfTaTiNbZr)C and (HfTaTiNbMo)C carbides fabricated through reactive high-energy ball milling and spark plasma sintering. Ceram Int. 2020;46(11):19008–19014.
  • Wei X-F, Qin Y, Liu J-X, et al. Gradient microstructure development and grain growth inhibition in high-entropy carbide ceramics prepared by reactive spark plasma sintering. J Eur Ceram Soc. 2020;40(4):935–941.
  • Feng L, Fahrenholtz WG, Hilmas GE. Low-temperature sintering of single-phase, high-entropy carbide ceramics. J Am Ceram Soc. 2019;102(12):7217–7224.
  • Wang K, Chen L, Xu C, et al. Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic. J Mater Sci Technol. 2020;39:99–105.
  • Wei X-F, Liu J-X, Li F, et al. High entropy carbide ceramics from different starting materials. J Eur Ceram Soc. 2019;39(10):2989–2994.
  • Biesuz M, Saunders TG, Chen K, et al. Interfacial reaction between ZrNbHfTa foil and graphite: formation of high-entropy carbide and the effect of heating rate on its microstructure. J Eur Ceram Soc. 2020;40(7):2699–2708.
  • Ye B, Wen T, Nguyen MC, et al. First-principles study, fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C high-entropy ceramics. Acta Mater. 2019;170:15–23.
  • WILLIAMS SW. Electrical properties of hard materials. Int J Refract Metals Hard Mater. 1999;17(1–3):21–26.
  • Pötschke J, Dahal M, Herrmann M, et al. Preparation of high-entropy carbides by different sintering techniques. J Mater Sci. 2021;56(19):11237–11247.
  • Zhang W, Chen L, Xu C, et al. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering. J Mater Sci Technol. 2021;72:23–28.
  • Chen H, Xiang H, Dai F-Z, et al. High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C. J Mater Sci Technol. 2019;35(8):1700–1705.
  • Zhou R, Li M, Wu H, et al. Effect of multi-component carbides on the mechanical behavior of a multi-element alloy. Mater Sci Eng A – Structural Materials Properties Microstructure and Processing. 2019;758:99–102.
  • Bao W, Wang X-G, Ding H, et al. High-entropy M2AlC-MC (M = Ti, Zr, Hf, Nb, Ta) composite: synthesis and microstructures. Scr Mater. 2020;183:33–38.
  • Nemani SK, Zhang B, Wyatt B, et al. High-Entropy 2D carbide MXenes. ChemRxiv. 2021.
  • Kan WH, Zhang Y, Tang X, et al. Precipitation of (Ti, Zr, Nb, Ta, Hf)C high entropy carbides in a steel matrix. Materialia. 2020;9:100540.
  • Leng Y, Zhang Z, Chen H, et al. Overcoming the phase separation within high-entropy metal carbide by poly(ionic liquid)s. Chem Commun (Camb. 2021;57(30):3676–3679.
  • Liu J, Xiong J, Guo Z, et al. Preparation of high-entropy (Zr0.25Hf0.25Ta0.25Ti0.25)C-Ni-Co composite by spark plasma sintering. Metall Mater Trans A – Physical Metallurgy and Materials Science. 2020;51(12):6706–6713.
  • Wang H, Wang S, Cao Y, et al. Oxidation behaviors of (Hf0.25Zr0.25Ta0.25Nb0.25)C and (Hf0.25Zr0.25Ta0.25Nb0.25)C-SiC at 1300-1500 degrees C. J Mater Sci Technol. 2021;60:147–155.
  • Lu K, Liu J-X, Wei X-F, et al. Microstructures and mechanical properties of high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C ceramics with the addition of SiC secondary phase. J Eur Ceram Soc. 2020;40(54):1839–1847.
  • Cai F, Ni D, Chen B, et al. Fabrication and properties of Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC high-entropy ceramic matrix composites via precursor infiltration and pyrolysis. J Eur Ceram Soc. 2021;41(12):5863–5871.
  • Zhou N, Hu T, Huang J, et al. Stabilization of nanocrystalline alloys at high temperatures via utilizing high-entropy grain boundary complexions. Scr Mater. 2016;124:160–163.
  • Zhou N, Hu T, Luo J. Grain boundary complexions in multicomponent alloys: challenges and opportunities. Curr Opin Solid State Mater Sci. 2016;20(5):268–277.
  • Riedel R. Handbook of ceramic hard materials. Transit Met Carbides, Nitrides, Carbonitrides. 2000: 202–252. 10.1002/9783527618217.
  • Ye B, Chu Y, Huang K, et al. Synthesis and characterization of (Zr1/3Nb1/3Ti1/3)C metal carbide solid-solution ceramic. J Am Ceram Soc. 2019;102(3):919–923.
  • Zhao P, Zhu J, Zhang Y, et al. A novel high-entropy monoboride (Mo0.2Ta0.2Ni0.2Cr0.2W0.2)B with superhardness and low thermal conductivity. Ceram Int. 2020;46(17):26626–26631.
  • Wei X, Back C, Izhvanov O, et al. Zirconium carbide produced by spark plasma sintering and Hot pressing: densification kinetics, grain growth, and thermal properties. Materials (Basel). 2016;9(7.
  • Zhang B, Yin J, Wang Y, et al. Low temperature densification mechanism and properties of Ta1-xHfxC solid solutions with decarbonization and phase transition of Cr3C2. J Materiomics. 2020.
  • Liu D, Zhang A, Jia J, et al. Reaction synthesis and characterization of a new class high entropy carbide (NbTaMoW)C. Mater Sci Eng A. 2021;804:140520.
  • Zhang Y, Stocks GM, Jin K, et al. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat Commun. 2015;6(1):8736.
  • Körmann F, Ikeda Y, Grabowski B, et al. Phonon broadening in high entropy alloys. Npj Comput Math. 2017;3(1):36.
  • Zhao F, Hui W, Yuan W, et al. Thermoelectric performance of PbSnTeSe high-entropy alloys. Mater Res Lett. 2016: 1–8.
  • Chou H-P, Chang Y-S, Chen S-K, et al. Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤x≤2) high-entropy alloys. Mater Sci Eng: B. 2009;163(3):184–189.
  • Wei X-F, Liu J-X, Bao W, et al. High-entropy carbide ceramics with refined microstructure and enhanced thermal conductivity by the addition of graphite. J Eur Ceram Soc. 2021;41(9):4747–4754.
  • Dai F-Z, Wen B, Sun Y, et al. Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential. J Mater Sci Technol. 2020;43:168–174.
  • Jiang S, Shao L, Fan T-W, et al. Elastic and thermodynamic properties of high entropy carbide (HfTaZrTi)C and (HfTaZrNb)C from ab initio investigation. Ceram Int. 2020;46(10):15104–15112.
  • Feng L, Chen W-T, Fahrenholtz WG, et al. Strength of single-phase high-entropy carbide ceramics up to 2300 degrees C. J Am Ceram Soc. 2021;104(1):419–427.
  • Balasubramanian K, Khare SV, Gall D. Valence electron concentration as an indicator for mechanical properties in rocksalt structure nitrides, carbides and carbonitrides. Acta Mater. 2018;152:175–185.
  • Csanadi T, Castle E, Reece MJ, et al. Strength enhancement and slip behaviour of high-entropy carbide grains during micro-compression. Sci Rep. 2019;9:10200.
  • Tamás Csanádi MV, Dankházi Z, Reece MJ, et al. Small scale fracture and strength of high-entropy carbide grains during microcantilever bending experiments. J Eur Ceram Soc. 2020;40(14):4774–4782.
  • Han X, Girman V, Sedlak R, et al. Improved creep resistance of high entropy transition metal carbides. J Eur Ceram Soc. 2019;40(7):2709–2715.
  • Zhang H, Akhtar F. Processing and characterization of refractory quaternary and quinary high-entropy carbide composite. Entropy . 2019;21(5).
  • Wang F, Yan X, Wang T, et al. Irradiation damage in (Zr0.25Ta0.25Nb0.25Ti0.25)C high-entropy carbide ceramics. Acta Mater. 2020;195:739–749.
  • Dusza J, Csanádi T, Medveď D, et al. Nanoindentation and tribology of a (Hf-Ta-Zr-Nb-Ti)C high-entropy carbide. J Eur Ceram Soc. 2021;41(11):5417–5426.
  • Sangiovanni DG, Mellor W, Harrington T, et al. Enhancing plasticity in high-entropy refractory ceramics via tailoring valence electron concentration. Mater Des. 2021;209:109932.
  • Backman L, Opila EJ. Thermodynamic assessment of the group IV, V and VI oxides for the design of oxidation resistant multi-principal component materials. J Eur Ceram Soc. 2019;39(5):1796–1802.
  • Backman L, Gild J, Luo J, et al. Part I: Theoretical predictions of preferential oxidation in refractory high entropy materials. Acta Mater. 2020;197:20–27.
  • Backman L, Gild J, Luo J, et al. Part II: Experimental verification of computationally predicted preferential oxidation of refractory high entropy ultra-high temperature ceramics. Acta Mater. 2020;197:81–90.
  • Wang Y, Zhang R-z, Zhang B, et al. The role of multi-elements and interlayer on the oxidation behaviour of (Hf-Ta-Zr-Nb)C high entropy ceramics. Corros Sci. 2020;176:109019.
  • Ye B, Wen T, Chu Y. High-temperature oxidation behavior of (Hf0. 2Zr0. 2Ta0. 2Nb0. 2Ti0. 2) C high-entropy ceramics in air. J Am Ceram Soc. 2020;103(1):500–507.
  • Ye B, Wen T, Liu D, et al. Oxidation behavior of (Hf0. 2Zr0. 2Ta0. 2Nb0. 2Ti0. 2) C high-entropy ceramics at 1073-1473 K in air. Corros Sci. 2019;153:327–332.
  • Tan Y, Chen C, Li S, et al. Oxidation behaviours of high-entropy transition metal carbides in 1200° C water vapor. J Alloys Compd. 2020;816:152523.
  • Wang H, Han X, Liu W, et al. Oxidation behavior of high-entropy carbide (Hf0.2Ta0.2Zr0.2Ti0.2Nb0.2)C at 1400–1600 °C. Ceram Int. 2021;47(8):10848–10854.
  • Wang Y, Reece MJ. Oxidation resistance of (Hf-Ta-Zr-Nb)C high entropy carbide powders compared with the component monocarbides and binary carbide powders. Scr Mater. 2021;193:86–90.
  • Mellor WM, Kaufmann K, Dippo OF, et al. Development of ultrahigh-entropy ceramics with tailored oxidation behavior. J Eur Ceram Soc. 2021;41(12):5791–5800.
  • Wang H, Cao Y, Liu W, et al. Oxidation behavior of (Hf0.2Ta0.2Zr0.2Ti0.2Nb0.2)C-xSiC ceramics at high temperature. Ceram Int. 2020;46(8):11160–11168.
  • Wang F, Yan X, Shao L, et al. Irradiation damage behavior in novel high-entropy carbide ceramics. Transactions. 2019;120:327–327.
  • Wang F, Yan X, Shao L, et al. Irradiation damage behavior in novel high-entropy carbide ceramics. Transactions Am Nucl Soc. 2019;120:327.