Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 122, 2023 - Issue 1
1,079
Views
0
CrossRef citations to date
0
Altmetric
SI-Davidge Award

Review of processing and design methodologies of environmental barrier coatings for next generation gas turbine applications

ORCID Icon &
Pages 36-56 | Received 31 Aug 2022, Accepted 16 Mar 2023, Published online: 12 Apr 2023

References

  • Marshall DB, Cox BN. Integral textile ceramic structures. Annu. Rev. Mater. Res. 2008;38:425–443. doi:10.1146/annurev.matsci.38.060407.130214.
  • Padture NP. Advanced structural ceramics in aerospace propulsion. Nat. Mater. 2016;15:804–809. doi:10.1038/nmat4687.
  • Lamon J. Properties and characteristics of SiC and SiC/SiC composites. Amsterdam: Elsevier Inc.; 2012. p. 323–338. doi:10.1016/B978-0-08-056033-5.00022-7.
  • Lamouroux F, Naslain R, Jouin J-M. Kinetics and mechanisms of oxidation of 2D woven C/SiC composites: II, theoretical approach. J. Am. Ceram. Soc. 1994;77:2058–2068. doi:10.1111/j.1151-2916.1994.tb07097.x.
  • Hu C, Tang S, Pang S, et al. Long-term oxidation behaviors of C/SiC composites with a SiC/UHTC/SiC three-layer coating in a wide temperature range. Corros. Sci. 2019;147:1–8. doi:10.1016/j.corsci.2018.10.017.
  • Longbiao L. Comparison of fatigue life between C/SiC and SiC/SiC ceramic-matrix composites at room and elevated temperatures. Appl Compos Mater. 2016;23:913–952. doi:10.1007/s10443-016-9492-5.
  • Al Nasiri N, Patra N, Ni N, et al. Oxidation behaviour of SiC/SiC ceramic matrix composites in air. J. Eur. Ceram. Soc. 2016;36:3293–3302. doi:10.1016/j.jeurceramsoc.2016.05.051.
  • Opila EJ. Oxidation and volatilization of silica formers in water vapor. J. Am. Ceram. Soc. 2003;86:1238–1248. doi:10.1111/j.1151-2916.2003.tb03459.x.
  • Naslain R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: An overview. Compos. Sci. Technol. 2004;64:155–170. doi:10.1016/S0266-3538(03)00230-6.
  • Opila EJ. Variation of the oxidation rate of silicon carbide with water-vapor pressure. J. Am. Ceram. Soc. 1999;82:625–636. doi:10.1111/j.1151-2916.1999.tb01810.x.
  • Naslain RR, Pailler RJF, Lamon JL. Single- and multilayered interphases in SiC/SiC composites exposed to severe environmental conditions: An overview. Int. J. Appl. Ceram. Technol. 2010;7:263–275. doi:10.1111/j.1744-7402.2009.02424.x.
  • Kerans RJ, Hay RS, Parthasarathy TA, et al. Interface design for oxidation-resistant ceramic composites. J. Am. Ceram. Soc. 2002;85:2599–2632. doi:10.1111/j.1151-2916.2002.tb00505.x.
  • Naslain R, Dugne O, Guette A, et al. Boron nitride interphase in ceramic-matrix composites. J. Am. Ceram. Soc. 1991;74:2482–2488. doi:10.1111/j.1151-2916.1991.tb06789.x.
  • Christensen VL, Zok FW. Insights into internal oxidation of SiC/BN/SiC composites. J. Am. Ceram. Soc. 2023;106:1561–1575. doi:10.1111/jace.18834.
  • More KL, Tortorelli PF, Walker LR, et al. High-Temperature stability of SiC-based composites in high-water-vapor-pressure environments. J. Am. Ceram. Soc. 2003;86:1272–1281. doi:10.1111/j.1151-2916.2003.tb03463.x.
  • Ruggles-Wrenn MB, Jones TP. Tension-compression fatigue of a SiC/SiC ceramic matrix composite at 1200 °c in air and in steam. Int J Fatigue. 2013;47:154–160. doi:10.1016/j.ijfatigue.2012.08.006.
  • Ruggles-Wrenn MB, Pope MT, Zens TW. Creep behavior in interlaminar shear of a Hi-NicalonTM/SiC-B4C composite at 1200°C in air and in steam. Mater Sci Eng A. 2014;610:279–289. doi:10.1016/j.msea.2014.05.056.
  • Faucett DC, Choi SR. Strength Degradation of Oxide/Oxide and SiC/SiC Ceramic Matrix Composites in CMAS and CMAS/Salt Exposures, in: Vol. 1 Aircr. Engine; Ceram. Coal, Biomass Altern. Fuels; Wind Turbine Technol., ASMEDC, 2011: pp. 497–504. doi:10.1115/GT2011-46771.
  • Basu SN, Sarin VK. Thermal and environmental barrier coatings for Si-based ceramics. Amsterdam: Elsevier Ltd; 2014. p. 469–489. doi:10.1016/B978-0-08-096527-7.00036-2.
  • Lee KN. Environmental barrier coatings for CMCs. CT: Wiley; 2015. pp. 430–451
  • Tejero-Martin D, Bennett C, Hussain T. A review on environmental barrier coatings: history,: current state of the art and future developments. J. Eur. Ceram. Soc. 2021;41:1747–1768. doi:10.1016/j.jeurceramsoc.2020.10.057.
  • Zhu D. Engineered Ceramics Advanced Ceramics and Ceramic Matrix Composites John Wiley & Sons, Ltd; 2016. p. 187–202. doi10.1002/9781119100430.ch10.
  • Robertson AL, Solá F, Zhu D, et al. Microscale fracture mechanisms of HfO 2 -Si environmental barrier coatings. J. Eur. Ceram. Soc. 2019;39:2409–2418. doi:10.1016/j.jeurceramsoc.2019.02.001.
  • Lee KN, Waters DL, Puleo BJ, et al. Development of oxide-based high temperature environmental barrier coatings for ceramic matrix composites via the slurry process. J. Eur. Ceram. Soc. 2021;41:1639–1653. doi:10.1016/J.JEURCERAMSOC.2020.10.012.
  • Li G, Lu X, Huang J, et al. Thermal cycling behavior and failure mechanism of the Si-HfO2 environmental barrier coating bond coats prepared by atmospheric plasma spraying. J. Alloys Compd. 2022;913(165319):1–13. doi:10.1016/j.jallcom.2022.165319.
  • Guduru RK, Dixit U, Kumar A. A critical review on thermal spray based manufacturing technologies. Mater. Today Proc. 2022;62(Part 13):7265–7269. doi:10.1016/j.matpr.2022.04.107.
  • Lee KN, Miller RA, Jacobson NS. New generation of plasma-sprayed mullite coatings on silicon carbide. J. Am. Ceram. Soc. 1995;78:705–710. doi:10.1111/j.1151-2916.1995.tb08236.x.
  • Lee KN, Fox DS, Eldridge JI, et al. Upper temperature limit of environmental barrier coatings based on mullite and BSAS. J. Am. Ceram. Soc. 2003;86:1299–1306. doi:10.1111/j.1151-2916.2003.tb03466.x.
  • Richards BT, Wadley HNG. Plasma spray deposition of tri-layer environmental barrier coatings. J. Eur. Ceram. Soc. 2014;34:3069–3083. doi:10.1016/j.jeurceramsoc.2014.04.027.
  • Richards BT, Begley MR, Wadley HNG. Mechanisms of ytterbium monosilicate/mullite/silicon coating failure during thermal cycling in water vapor. J. Am. Ceram. Soc. 2015;98:4066–4075. doi:10.1111/jace.13792.
  • Richards BT, Sehr S, De Franqueville F, et al. Fracture mechanisms of ytterbium monosilicate environmental barrier coatings during cyclic thermal exposure. Acta Mater. 2016;103:448–460. doi:10.1016/j.actamat.2015.10.019.
  • Richards BT, Zhao H, Wadley HNG. Structure, composition, and defect control during plasma spray deposition of ytterbium silicate coatings. J. Mater. Sci. 2015;50:7939–7957. doi:10.1007/s10853-015-9358-5.
  • Richards BT, Young KA, De Francqueville F, et al. Response of ytterbium disilicate-silicon environmental barrier coatings to thermal cycling in water vapor. Acta Mater. 2016;106:1–14. doi:10.1016/j.actamat.2015.12.053.
  • Olson DH, Deijkers JA, Quiambao-Tomko K, et al. Evolution of microstructure and thermal conductivity of multifunctional environmental barrier coating systems. Mater. Today Phys. 2021;17(100304):1–10. doi:10.1016/j.mtphys.2020.100304.
  • Cojocaru CV, Lévesque D, Moreau C, et al. Performance of thermally sprayed Si/mullite/BSAS environmental barrier coatings exposed to thermal cycling in water vapor environment. Surf. Coatings Technol. 2013;216:215–223. doi:10.1016/j.surfcoat.2012.11.043.
  • Suzuki M, Sodeoka S, Inoue T. Structure control of plasma sprayed zircon coating by substrate preheating and post heat treatment. Mater. Trans. 2005;46:669–674. doi:10.2320/matertrans.46.669.
  • Garcia E, Lee H, Sampath S. Phase and microstructure evolution in plasma sprayed Yb2Si2O7 coatings. J. Eur. Ceram. Soc. 2019;39:1477–1486. doi:10.1016/j.jeurceramsoc.2018.11.018.
  • Garcia E, Sotelo-Mazon O, Poblano-Salas CA, et al. Characterization of Yb2Si2O7–Yb2SiO5 composite environmental barrier coatings resultant from in situ plasma spray processing. Ceram. Int. 2020;46:21328–21335. doi:10.1016/j.ceramint.2020.05.228.
  • Garcia E, Garces HF, Turcer LR, et al. Crystallization behavior of air-plasma-sprayed ytterbium-silicate-based environmental barrier coatings. J. Eur. Ceram. Soc. 2021;41:3696–3705. doi:10.1016/j.jeurceramsoc.2020.12.051.
  • Zhong X, Niu Y, Li H, et al. Thermal shock resistance of tri-layer Yb 2 SiO 5 /Yb 2 Si 2 O 7 /Si coating for SiC and SiC-matrix composites. J. Am. Ceram. Soc. 2018;101:4743–4752. doi:10.1111/jace.15713.
  • Yang H, Yang Y, Cao X, et al. Thermal shock resistance and bonding strength of tri-layer Yb2SiO5/mullite/Si coating on SiCf/SiC composites. Ceram. Int. 2020;46:27292–27298. doi:10.1016/j.ceramint.2020.07.214.
  • Zhong X, Niu Y, Li H, et al. Comparative study on high-temperature performance and thermal shock behavior of plasma-sprayed Yb2SiO5and Yb2Si2O7coatings. Surf. Coatings Technol. 2018;349:636–646. doi:10.1016/j.surfcoat.2018.06.056.
  • Mahade S, Narayan K, Govindarajan S, et al. Exploiting suspension plasma spraying to deposit wear-resistant carbide coatings. Materials (Basel). 2019;12:1–9. doi:10.3390/ma12152344.
  • Jordan EH, Jiang C, Gell M. The solution precursor plasma spray (SPPS) process: A review with energy considerations. J. Therm. Spray Technol. 2015;24:1153–1165. doi:10.1007/s11666-015-0272-9.
  • Ryu H, Lee SM, Han YS, et al. Preparation of crystalline ytterbium disilicate environmental barrier coatings using suspension plasma spray. Ceram. Int. 2019;45:5801–5807. doi:10.1016/j.ceramint.2018.12.048.
  • Jiang C, Cietek D, Kumar R, et al. Ytterbium silicate environmental barrier coatings deposited using the solution-based precursor plasma spray. J. Therm. Spray Technol. 2020;29:979–994. doi:10.1007/s11666-020-01046-1.
  • Bakan E, Mauer G, Sohn Y, et al. Application of high-velocity oxygen-fuel (HVOF) spraying to the fabrication of Yb-silicate environmental barrier coatings. Coatings. 2017;7(55):1–12. doi:10.3390/coatings7040055.
  • Oberste Berghaus J, Marple BR. High-velocity oxy-fuel (HVOF) suspension spraying of mullite coatings. J. Therm. Spray Technol. 2008;17:671–678. doi:10.1007/s11666-008-9219-8.
  • Chen D. Suspension HVOF sprayed ytterbium disilicate environmental barrier coatings. J. Therm. Spray Technol. 2022;31:429–435. doi:10.1007/s11666-022-01343-x.
  • Ramasamy S, Tewari SN, Lee KN, et al. Slurry based multilayer environmental barrier coatings for silicon carbide and silicon nitride ceramics - II. oxidation resistance. Surf. Coatings Technol. 2010;205:258–265. doi:10.1016/j.surfcoat.2010.07.048.
  • Ramasamy S, Tewari SN, Lee KN, et al. Slurry based multilayer environmental barrier coatings for silicon carbide and silicon nitride ceramics - II. oxidation resistance. Surf. Coatings Technol. 2010;205:266–270. doi:10.1016/j.surfcoat.2010.07.048.
  • Al Nasiri N, Patra N, Pezoldt M, et al. Investigation of a single-layer EBC deposited on SiC/SiC CMCs: processing and corrosion behaviour in high-temperature steam. J. Eur. Ceram. Soc. 2019;39:2703–2711. doi:10.1016/j.jeurceramsoc.2018.12.019.
  • Kim H, Chen M, Yang Q, et al. Sol-gel alumina environmental barrier coatings for SiC grit. Mater Sci Eng A. 2006;420:150–154. doi:10.1016/j.msea.2006.01.087.
  • Jayaseelan DD, Ueno S, Ohji T, et al. Sol-gel synthesis and coating of nanocrystalline Lu2Si 2O7 on Si3N4 substrate. Mater. Chem. Phys. 2004;84:192–195. doi:10.1016/j.matchemphys.2003.11.028.
  • Prioux M, Duluard S, Ansart F, et al. Advances in the control of electrophoretic process parameters to tune the ytterbium disilicate coatings microstructure. J. Am. Ceram. Soc. 2020;103. doi:10.1111/jace.17365.
  • Yilmaz E, Xiao P. Effects of suspension properties on the fabrication of Yb2Si2O7 coatings using electrophoretic deposition. J. Eur. Ceram. Soc. 2021;42:638–648. doi:10.1016/j.jeurceramsoc.2021.10.038.
  • Basu SN, Kulkarni T, Wang HZ, et al. Functionally graded chemical vapor deposited mullite environmental barrier coatings for Si-based ceramics. J. Eur. Ceram. Soc. 2008;28:437–445. doi:10.1016/j.jeurceramsoc.2007.03.007.
  • Xu J, Sarin VK, Dixit S, et al. Stability of interfaces in hybrid EBC/TBC coatings for Si-based ceramics in corrosive environments. Int J Refract Met Hard Mater. 2015;49:339–349. doi:10.1016/j.ijrmhm.2014.08.013.
  • Yokoi T, Yamaguchi N, Tanaka M, et al. Preparation of a dense ytterbium disilicate layer via dual electron beam physical vapor deposition at high temperature. Mater. Lett. 2017;193:176–178. doi:10.1016/j.matlet.2017.01.085.
  • Zhang XF, Zhou KS, Liu M, et al. Oxidation and thermal shock resistant properties of Al-modified environmental barrier coating on SiCf/SiC composites. Ceram. Int. 2017;43:13075–13082. doi:10.1016/j.ceramint.2017.06.167.
  • Harder BJ. Oxidation performance of Si-HfO2 environmental barrier coating bond coats deposited via plasma spray-physical vapor deposition. Surf. Coatings Technol. 2020;384(125311):1–8. doi:10.1016/j.surfcoat.2019.125311.
  • Zhang X, Song J, Deng Z, et al. Interface evolution of Si/mullite/Yb2SiO5 PS-PVD environmental barrier coatings under high temperature. J. Eur. Ceram. Soc. 2020;40:1478–1487. doi:10.1016/j.jeurceramsoc.2019.10.062.
  • Mechnich P. Y2sio5 coatings fabricated by RF magnetron sputtering. Surf. Coatings Technol. 2013;237:88–94. doi:10.1016/j.surfcoat.2013.08.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.