Publication Cover
Stochastics
An International Journal of Probability and Stochastic Processes
Volume 91, 2019 - Issue 7: Hammamet Stochastic Analysis 2017
296
Views
15
CrossRef citations to date
0
Altmetric
Articles

Lévy noise perturbation for an epidemic model with impact of media coverage

, , &
Pages 998-1019 | Received 29 Jan 2018, Accepted 12 Mar 2019, Published online: 24 Mar 2019

References

  • M.F. Abakar, H.Y. Azami, P.J. Bless, L. Crump, P. Lohmann, M. Laager, N. Chitnis, and J. Zinstag, Transmission dynamics and elimination potential of zoonotic tuberculosis in Morocco, PLOS Neglected Trop. Dis. 11(2) (2017), pp. 1–17. doi: 10.1371/journal.pntd.0005214
  • E. Allen, Modeling with Itô, Stochastic Differential Equations, Springer, Dordrecht, 2007.
  • H. Andersson and T. Britton, Stochastic Epidemic Models and Their Statistical Analysis, Lecture Notes in Statistics Vol. 151, Springer, New York, 2000.
  • R.M. Anderson and R.M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, 1991.
  • D. Applebaum, Lévy Process and Stochastic Calculus, Cambridge Press, New York, 2009.
  • D Applebaum and M Siakalli, Asymptotic stability of stochastic differential equations driven by Lévy noise, J. Appl. Prob. 46 (2009), pp. 1116–1129. doi: 10.1239/jap/1261670692
  • N.T.J. Bailey, The Mathematical Theory of Infectious Diseases and Its Applications, 2nd ed., Hafner, New York, 1975.
  • M.S. Bartlett, Stochastic Population Models in Ecology and Epidemiology, Methuens Monographs on Applied Probability and Statistics Vol. 4, Spottiswoode, Ballantyne, London, 1960.
  • B. Berrhazi, El Fatini M., T. Caraballo, and R. Pettersson, A stochastic SIRI epidemic model with Lévy noise, Discrete Contin. Dyn. Syst. Ser. B 23 (2018), pp. 2415–2431. doi: 10.3934/dcdsb.2018057
  • B. Berrhazi, El Fatini M., A. Laaribi, R. Pettersson, and R. Taki, A stochastic SIRS epidemic model incorporating media coverage and driven by Lévy noise, Chaos Solitons Fractals 105 (2017), pp. 60–68. doi: 10.1016/j.chaos.2017.10.007
  • S. Blower, Modelling the genital herpes epidemic, Herpes 11 (Suppl 3) (2004), pp. 138A–146A.
  • F. Brauer and Castillo-Chavez C., Mathematical Models in Population Biology and Epidemiology, Texts in Applied Mathematics Vol. 40, Springer, New York, 2001.
  • Y. Cai, Y. Kang, M. Banerjee, and W. Wang, A stochastic epidemic model incorporating media coverage, Commun. Math. Sci. 14 (2016), pp. 839–910. doi: 10.4310/CMS.2016.v14.n4.a1
  • T. Caraballo and R. Colucci, A comparison between random and stochastic modeling for a SIR model, Commun. Pure. Appl. Anal 16 (2017), pp. 151–162. doi: 10.3934/cpaa.2017007
  • Castillo-Chavez C., S. Blower, van den Driessche P., D. Kirschner, and A.-A. Yakubu, eds., Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction, The IMA Volumes in Mathematics and Its Applications Vol. 125, Springer, New York, 2002.
  • Castillo-Chavez C., S. Blower, van den Driessche P., D. Kirschner, and A-A. Yakubu, eds., Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods and Theory, The IMA Volumes in Mathematics and Its Applications Vol. 126, Springer, New York, 2002.
  • C. Chen and Y. Kang, The asymptotic behavior of a stochastic vaccination model with backward bifurcation, Appl. Math. Model. 40 (2016), pp. 6051–6068. doi: 10.1016/j.apm.2016.01.045
  • C. Chen and Y. Kang, Dynamics of a stochastic multi-strain SIS epidemic model driven by Lévy noise, Commun. Nonlinear Sci. Numer. Simulat. 42 (2017), pp. 379–395. doi: 10.1016/j.cnsns.2016.06.012
  • D.J. Daley and J. Gani, Epidemic Modelling, an Introduction, Cambridge: Studies in Mathematical Biology Vol. 15, Cambridge University Press, Cambridge, 1999.
  • O. Diekmann and J.A.P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley Series in Mathematical and Computational Biology, Wiley, New York, 2000.
  • El Fatini M., A. Lahrouz, R. Pettersson, A. Settati, and R. Taki, Stochastic stability and instability of an epidemic model with relapse, Appl. Math. Comput. 316 (2018), pp. 326–341.
  • P. Georgescu and H. Zhang, A Lyapunov functional for a SIRI model with nonlinear incidence of infection and relapse, Appl. Math. Comput. 219 (2013), pp. 8496–8507.
  • A. Gray, D. Greenhalgh, L. Hu, X. Mao, and J. Pan, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math. 71 (2011), pp. 876–902. doi: 10.1137/10081856X
  • H.W. Hethcote, The mathematics of infectious diseases, SIAM Rev. 42 (2000), pp. 599–653. doi: 10.1137/S0036144500371907
  • D.J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev. 43 (2001), pp. 525–546. doi: 10.1137/S0036144500378302
  • L. Imhof and S. Walcher, Exclusion and persistence in deterministic and stochastic chemostat models, J. Diff. Equ. 217 (2005), pp. 26–53. doi: 10.1016/j.jde.2005.06.017
  • C. Ji and D. Jiang, Threshold behaviour of a stochastic SIR model, Appl. Math. Model. 38 (2014), pp. 5067–5079. doi: 10.1016/j.apm.2014.03.037
  • W.O. Kermack and A.G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. London Ser. A 115 (1927), pp. 700–721. doi: 10.1098/rspa.1927.0118
  • R. Khasminskii, Stochastic Stability of Differential Equations, Springer, Berlin, 2012.
  • P.E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer-Verlag, Berlin, 1992.
  • A. Korobeinikov and P.K. Maini, A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence, Math. Biosci. Eng. 1 (2004), pp. 57–60. doi: 10.3934/mbe.2004.1.57
  • A. Lahrouz and L. Omari, Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence, Stat. Probab. Lett 83 (2013), pp. 960–968. doi: 10.1016/j.spl.2012.12.021
  • A. Lahrouz and A. Settati, Necessary and sufficient condition for extinction and persistence of SIRS system with random perturbation, Appl. Math. Comput. 233 (2014), pp. 10–19.
  • Y. Li and J. Cui, The effect of constant and pulse vaccination on SIS epidemic models incorporating media coverage, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), pp. 2353–2365. doi: 10.1016/j.cnsns.2008.06.024
  • Y. Lin, D. Jiang, and S. Wang, Stationary distribution of a stochastic SIS epidemic model with vaccination, Physica A. 394 (2014), pp. 187–197. doi: 10.1016/j.physa.2013.10.006
  • S. Liu, S. Wang, and L. Wang, Global dynamics of delay epidemic models with nonlinear incidence rate and relapse, Nonlinear Anal.: Real World Appl. 12 (2011), pp. 119–127. doi: 10.1016/j.nonrwa.2010.06.001
  • W. Liu and Q. Zheng, A stochastic SIS epidemic model incorporating media coverage in a two patch setting, Appl. Math. Comput. 262 (2015), pp. 160–168.
  • X. Mao, Stochastic Differential Equations and Applications, 2nd ed., Horwood, Cambridge, 2007.
  • X. Mao, G. Marion, and E. Renshaw, Environmental noise suppresses explosion in population dynamics, Stoch. Process Appl. 97 (2002), pp. 95–110. doi: 10.1016/S0304-4149(01)00126-0
  • H.N. Moreira and Y. Wang, Global stability in an SIRI model, SIAM Rev. 39 (1997), pp. 496–502. doi: 10.1137/S0036144595295879
  • ∅ksendal B. and A. Sulem, Applied Stochastic Control of Jump Diffusions, Springer-Verlag, Berlin, Heidelberg, 2005.
  • C. Sun, W. Yang, J. Arino, and K. Khan, Effect of media-induced social distancing on disease transmission in a two patch setting, Math. Biosci. 230 (2011), pp. 87–95. doi: 10.1016/j.mbs.2011.01.005
  • J. Tchuenche, N. Dube, C. Bhunu, R. Smith, and C. Bauch, The impact of media coverage on the transmission dynamics of human influenza, BMC Public Health 11(S5) (2011), pp. 1–14.
  • D. Tudor, A deterministic model for herpes infections in human and animal populations, SIAM Rev. 32 (1990), pp. 136–139. doi: 10.1137/1032003
  • van den Driessche P. and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), pp. 29–48. doi: 10.1016/S0025-5564(02)00108-6
  • Van den Driessche P. and X. Zou, Modeling relapse in infectious diseases, Math. Biosci. 207 (2007), pp. 89–103. doi: 10.1016/j.mbs.2006.09.017
  • Van den Driessche P., L. Wang, and X. Zou, Modeling diseases with latency and relapse, Math. Biosci. Eng. 4 (2007), pp. 205–219. doi: 10.3934/mbe.2007.4.205
  • Vargas-De-León C., On the global stability of infectious disease models with relapse, Abstraction Appl. 9 (2013), pp. 50–61.
  • P. Wildy, H.J. Field, and A.A. Nash, Classical herpes latency revisited, in Virus Persistence Symposium, vol. 33, B.W.J. Mahy, A.C. Minson, and G.K. Darby, eds., Cambridge University Press, Cambridge, 1982, pp. 133–168.
  • R. Xu, Global dynamics of a delayed epidemic model with latency and relapse, Nonlinear Anal.: Model. Control 18 (2013), pp. 250–263.
  • X. Zhang and K. Wang, Stochastic model for spread of AIDS driven by Lévy noise, J. Dyn. Diff. Equ. 27 (2015), pp. 215–236. doi: 10.1007/s10884-015-9459-5
  • X. Zhang and K. Wang, Stochastic SEIR model with jumps, Appl. Math. Comput 239 (2014), pp. 133–149.
  • X. Zhang and K. Wang, Stochastic SIR model with jumps, Appl. Math. Lett. 26 (2013), pp. 867–874. doi: 10.1016/j.aml.2013.03.013
  • M. Zhao and H. Zhao, Asymptotic behavior of global positive solution to a stochastic SIR model incorporating media coverage, Adv. Differ. Equ. 149 (2016), pp. 1–17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.