155
Views
9
CrossRef citations to date
0
Altmetric
Articles

Buckling of an egg-shaped shell with varying wall thickness under uniform external pressure

ORCID Icon, , &
Pages 559-569 | Received 13 Apr 2018, Accepted 07 Sep 2018, Published online: 21 Sep 2018

References

  • Blachut J. 2002. Buckling of externally pressurised barrelled shells: a comparison of experiment and theory. Int J Pres Ves Pip. 79(7):507–517. doi: 10.1016/S0308-0161(02)00040-6
  • Blachut J. 2003. Optimal barreling of steel shells via simulated annealing algorithm. Comput Struct. 81:1941–1956. doi: 10.1016/S0045-7949(03)00214-1
  • Blachut J. 2013. Experimental perspective on the buckling of pressure vessel components. Appl Mech Rev. 66(1):011003. doi: 10.1115/1.4026067
  • Blachut J. 2014. Buckling of cylinders with imperfect length. J Press Vess 137(1):011203. doi: 10.1115/1.4027246
  • Blachut J, Ifayefunmi O. 2012. Buckling of unstiffened steel cones subjected to axial compression and external pressure. J Offshore Mech Arct. 134 (031603-1-031603-9). doi: 10.1115/1.4004953
  • Blachut J, Magnucki K. 2008. Strength, stability, and optimization of pressure vessels: review of selected problems. Appl Mech Rev. 61(6):060801. doi: 10.1115/1.2978080
  • Blachut J, Muc A, Ryś J. 2013. Plastic buckling of cones subjected to axial compression and external pressure. J Press Vessel Technol. 135 (011205-1-011205-9).
  • Blachut J, Smith P. 2008. Buckling of multi-segment underwater pressure hull. Ocean Eng. 35(2):247–260. doi: 10.1016/j.oceaneng.2007.08.003
  • Blachut J, Wang P. 2001. Buckling of barreled shells subjected to external hydrostatic pressure. J Press Vess Technol. 123(2):232–239. doi: 10.1115/1.1357160
  • [CCS] China Classification Society. 2013. Rules for the classification and construction of diving systems and submersibles. Beijing: CCS.
  • [CEN] Comité Européen de Normalisation. 2007. EN 1993-1-6: Eurocode 3 – design of steel structures – part 1.6: strength and stability of shell structures. Brussels: CEN.
  • Foryś P. 2015. Optimization of cylindrical shells stiffened by rings under external pressure including their post-buckling behaviour. Thin Wall Struct. 95:231–243. doi: 10.1016/j.tws.2015.07.012
  • Ghanbari Ghazijahani T, Dizaji HS, Nozohor J, Zirakian T. 2015. Experiments on corrugated thin cylindrical shells under uniform external pressure. Ocean Eng. 106:68–76. doi: 10.1016/j.oceaneng.2015.06.057
  • Ghanbari Ghazijahani T, Jiao H, Holloway D. 2014. An experimental study on externally pressurized stiffened and thickened cylindrical shells. Thin Wall Struct. 85:359–366. doi: 10.1016/j.tws.2014.08.023
  • Ghanbari Ghazijahani T, Jiao H, Holloway D. 2015. Longitudinally stiffened corrugated cylindrical shells under uniform external pressure. J Constr Steel Res. 110:191–199. doi: 10.1016/j.jcsr.2015.02.016
  • Hilburger MW. 2007. Developing the next generation shell buckling design factors and technologies. AIAA paper 2012-1686. NF1676L-13283:1–15.
  • Hilburger MW, Nemeth MP, Starnes JH. 2006. Shell buckling design criteria based on manufacturing imperfection signatures. AIAA J. 44(3):654–663. doi: 10.2514/1.5429
  • Ifayefunmi O. 2016. Buckling behavior of axially compressed cylindrical shells: comparison of theoretical and experimental data. Thin Wall Struct. 98:558–564. doi: 10.1016/j.tws.2015.10.027
  • Jasion P. 2009. Stability analysis of shells of revolution under pressure conditions. Thin Wall Struct. 47(3):311–317. doi: 10.1016/j.tws.2008.07.005
  • Jasion P, Magnucki K. 2015a. Elastic buckling of cassini ovaloidal shells under external pressure – theoretical study. Arch Mech. 67(2):179–192.
  • Jasion P, Magnucki K. 2015b. Elastic buckling of clothoidal-spherical shells under external pressure – theoretical study. Thin Wall Struct. 86:18–23. doi: 10.1016/j.tws.2014.10.001
  • Malinowski M, Belica T, Magnucki K. 2015. Buckling and post-buckling behaviour of elastic seven-layered cylindrical shells – FEM study. Thin Wall Struct. 94:478–484. doi: 10.1016/j.tws.2015.05.017
  • Mushtari HM. 1915. On elastic equilibrium of a thin shell with initial irregularities of the form of a middle surface. PMM. 15(6):743–750.
  • Narushin VG. 2001. Shape geometry of the avian egg. J Agric Eng Res. 79(4):441–448. doi: 10.1006/jaer.2001.0721
  • Narushin VG, Romanov MN. 2002. Physical characteristics of chicken eggs in relation to their hatchability and chick weight. World Poult Sci J. 58:297–303. doi: 10.1079/WPS20020023
  • Pan BB, Cui WC, Shen YS. 2012. Experimental verification of the new ultimate strength equation of spherical pressure hulls. Mar Struct. 29:169–176. doi: 10.1016/j.marstruc.2012.05.007
  • Schmidt H. 2000. Stability of steel shell structures. J Constr Steel Res. 55:159–181. doi: 10.1016/S0143-974X(99)00084-X
  • Thompson J, Michael T. 2015. Advances in shell buckling: theory and experiments. Int J Bifurcat Chaos. 25(1):1530001. doi: 10.1142/S0218127415300013
  • Zhang J, Wang ML, Cui WC, Wang F, Hua ZD, Tang WX. 2017. Effect of thickness on the buckling strength of egg-shaped pressure hulls. Ships Offshore Struc. 2017:1–10.
  • Zhang J, Wang ML, Wang WB, Tang WX. 2017. Buckling of egg-shaped shells subjected to external pressure. Thin Wall Struct. 113:122–128. doi: 10.1016/j.tws.2017.01.017
  • Zhang J, Wang ML, Wang WB, Tang WX, Zhu YM. 2017. Investigation on egg-shaped pressure hulls. Mar Struct. 52:50–66. doi: 10.1016/j.marstruc.2016.11.005
  • Zhang J, Zhang M, Cui WC, Tang WX, Wang F, Pan BB. 2018. Elastic-plastic buckling of deep sea spherical pressure hulls. Mar Struct. 57:38–51. doi: 10.1016/j.marstruc.2017.09.007
  • Zhang J, Zhang M, Tang WX, Wang WB, Wang ML. 2017. Buckling of spherical shells subjected to external pressure: a comparison of experimental and theoretical data. Thin Wall Struct. 111:58–64. doi: 10.1016/j.tws.2016.11.012
  • Zhang J, Zhu BY, Wang F, Tang WX, Wang WB, Zhang M. 2017. Buckling of prolate egg-shaped domes under hydrostatic external pressure. Thin Wall Struct. 119:296–303. doi: 10.1016/j.tws.2017.06.022
  • Zhou F, Chen Z, Zheng C, Xu F, Hu Y, Hou S, Qin Z. 2017. Experimental and numerical buckling failure analysis of acrylic hemispheres for application in neutrino detector. Eng Fail Anal. 78:147–160. doi: 10.1016/j.engfailanal.2017.03.017
  • Zingoni A. 2015. Liquid-containment shells of revolution: a review of recent studies on strength, stability and dynamics. Thin Wall Struct. 87:102–114. doi: 10.1016/j.tws.2014.10.016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.