411
Views
5
CrossRef citations to date
0
Altmetric
Articles

An ice material model for assessment of strain rate, temperature and confining pressure effects using finite element method

, ORCID Icon, ORCID Icon, &
Pages 34-44 | Received 30 Sep 2018, Accepted 25 Nov 2018, Published online: 05 Dec 2018

References

  • Ashby MF, Duval P. 1985. The creep of polycrystalline ice. Cold Reg Sci Technol. 11(3):285–300. doi: 10.1016/0165-232X(85)90052-7
  • Barnes P, Tabor D, Walker JCF. 1971. The friction and creep of polycrystalline ice. Proc.Royal Soc.London A. 324(1557):127–155. doi: 10.1098/rspa.1971.0132
  • Cuffey KM, Thorsteinsson T, Waddington ED. 2000. A renewed argument for crystal size control of ice sheet strain rates. J Geophys Res Solid Earth. 105(B12):27889–27894. doi: 10.1029/2000JB900270
  • Cole DM. 2001. The microstructure of ice and its influence on mechanical properties. Eng Fract Mech. 68(17–18):1797–1822. doi: 10.1016/S0013-7944(01)00031-5
  • Durham WB, Heard HC, Kirby SH. 1983. Experimental deformation of polycrystalline h2o ice at high pressure and low temperature: preliminary results. J Geophys Res Solid Earth. 88(S01):B377–B392. doi: 10.1029/JB088iS01p0B377
  • Dutta PK. 1993. Compressive failure of polycrystalline ice under impact. In: The Third International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers. p. 573–580.
  • Fortino S, Hartikainen J, Kolari K, Kouhia R, Manninen T. 2006. A constitutive model for strain-rate dependent ductile-to brittle-transition. Lappeenranta. 652–662.
  • Frederking RMW, Jordaan IJ, McCallum JS. 1990. Field tests of ice indentation at medium scale Hobson’s Choice Ice Island. Proceedings of 10th International Symposium on Ice, IAHR, Espoo, Finland. Vol. 2, p. 931–944.
  • Gagnon RE, Gammon PH. 1995. Triaxial experiments on iceberg and glacier ice. J Glaciol. 41(139):528–540. doi: 10.1017/S0022143000034869
  • Gagnon RE, Wang J. 2012. Numerical simulations of a tanker collision with a bergy bit incorporating hydrodynamics, a validated ice model and damage to the vessel. Cold Reg Sci Technol. 81(5):26–35. doi: 10.1016/j.coldregions.2012.04.006
  • Glen JW. 1955. The creep of polycrystalline ice. Proc Royal Soc London. 228(1175):519–538. doi: 10.1098/rspa.1955.0066
  • Ince ST, Kumar A, Park DK, Paik JK. 2017. An advanced technology for structural crashworthiness analysis of a ship colliding with an ice-ridge: numerical modelling and experiments. Int J Impact Eng. 110:112–122. doi: 10.1016/j.ijimpeng.2017.02.014
  • Ince ST, Kumar A, Paik JK. 2016. A new constitutive equation on ice materials. Sh Offshore Struct. 12(5):610–623. doi: 10.1080/17445302.2016.1190122
  • Jacka TH. 1984. The time and strain required for development of minimum strain rates in ice. Cold Reg Sci Technol. 8(3):261–268. doi: 10.1016/0165-232X(84)90057-0
  • Jones SJ. 1982. The confined compressive strength of polycrystalline ice. J Glaciol. 28(98):171–178. doi: 10.1017/S0022143000011874
  • Jones SJ. 1997. High strain-rate compression tests on ice. J Phys Chem B. 101(32). doi: 10.1021/jp963162j
  • Jones SJ. 2007. A review of the strength of iceberg and other freshwater ice and the effect of temperature. Cold Reg Sci Technol. 47(3):256–262. doi: 10.1016/j.coldregions.2006.10.002
  • Jones SJ, Chew HAM. 1983. Creep of ice as a function of hydrostatic pressure. J Phys Chem. 87(21):4064–4066. doi: 10.1021/j100244a013
  • Jones SJ, Gagnon RE, Derradji A, Bugden A. 2003. Compressive strength of iceberg ice. Can J Phys. 81(1–2):191–200(10). doi: 10.1139/p02-137
  • Jordaan IJ. 2001. Mechanics of ice–structure interaction. Eng Fract Mech. 68(17):1923–1960. doi: 10.1016/S0013-7944(01)00032-7
  • Jordaan IJ, Matskevitch DG, Meglis IL. 1999. Disintegration of ice under fast compressive loading. Int J Fract. 97(97):279–300. doi: 10.1023/A:1018605517923
  • Jordaan IJ, Taylor R, Reid S. 2007 . Fracture, probabilistic averaging and the scale effect in ice-structure interaction. Proceedings of the International Conference on Port and Ocean Engineering under Arctic Conditions. p. 296–304.
  • Kolari K. 2017. A complete three-dimensional continuum model of wing-crack growth in granular brittle solids. Int J Solids Struct. 115:27–42.
  • Li C, Barrette P, Jordaan IJ. 2004. High-pressure zones at different scales during ice–structure indentation. Proceedings 23rd international conference on offshore mechanics and Arctic Engineering, Vancouver, British Columbia.
  • Liu Z, Amdahl J, Løset S. 2011. Plasticity based material modelling of ice and its application to ship–iceberg impacts. Cold Reg Sci Technol. 65(3):326–334. doi: 10.1016/j.coldregions.2010.10.005
  • Meglis IL, Melanson PM, Jordaan IJ. 1999. Microstructural change in ice: II. Creep behavior under triaxial stress conditions. J Glaciol. 45(151):438–448. doi: 10.1017/S0022143000001295
  • Melanson PM, Meglis IL, Jordaan IJ, Stone BM. 1999. Microstructural change in ice: I. Constant-deformation-rate tests under triaxial stress conditions. J Glaciol. 45(151):417–422. doi: 10.1017/S0022143000001271
  • Mellor M, Cole DM. 1982. Deformation and failure of ice under constant stress or constant strain-rate. Cold Reg Sci Technol. 5(3):201–219. doi: 10.1016/0165-232X(82)90015-5
  • Michel B. 1978. The strength of polycrystalline ice. Can J Civ Eng. 5(3):285–300. doi: 10.1139/l78-034
  • Nordell B. 1990. Measurement of PT coexistence curve for ice-water mixture. Cold Reg Sci Technol. 19(1):83–88.
  • O’Rourke BJ, Jordaan IJ, Taylor RS, Gürtner A. 2016. Experimental investigation of oscillation of loads in ice high-pressure zones, part 1: single indentor system. Cold Reg Sci Technol. 124:25–39. doi: 10.1016/j.coldregions.2015.12.005
  • Ortiz R, Deletombe E, Chuzel-Marmot Y. 2015. Assessment of damage model and strain rate effects on the fragile stress/strain response of ice material. Int J Impact Eng. 76:126–138. doi: 10.1016/j.ijimpeng.2014.09.011
  • Paul D. 1978. Anelastic behavior of polycrystalline ice. J Glaciol. 21(85):621–628. doi: 10.1017/S0022143000033736
  • Rist MA, Murrell SAF. 1994. Ice triaxial deformation and fracture. J Glaciol. 40(135):305–318. doi: 10.1017/S0022143000007395
  • Schapery RA. 1991. Models for the deformation behavior of Viscoelastic Media with distributed damage and their Applicability to Ice. Ice-Structure Interaction: Springer. 1991:191–230. doi: 10.1007/978-3-642-84100-2_11
  • Schulson E, Duval P. 2009. Creep and fracture of ice. Cambridge University Press.
  • Shazly M, Prakash V, Lerch BA. 2006. High-strain-rate compression testing of ice.
  • Shi C, Hu Z, Ringsberg J, Luo Y. 2017. A nonlinear viscoelastic iceberg material model and its numerical validation. Proceedings of the Institution of Mechanical Engineers Part M Journal of Engineering for the Maritime Environment. 231(2):675–689. doi: 10.1177/1475090216680907
  • Sinha NK. 1978. Rheology of columnar-grained ice. Exp Mech. 18(12):464–470. doi: 10.1007/BF02324282
  • Stone BM, Jordaan IJ, Xiao J, Jones SJ. 1997. Experiments on the damage process in ice under compressive states of stress. J Glaciol. 43(143):11–25. doi: 10.1017/S002214300000277X
  • Taylor RS, Jordaan IJ. 2015. Probabilistic fracture mechanics analysis of spalling during edge indentation in ice. Eng Fract Mech. 134:242–266. doi: 10.1016/j.engfracmech.2014.10.021
  • Timco GW. 2011. Isolated ice floe impacts. Cold Reg Sci Technol. 68(1):35–48. doi: 10.1016/j.coldregions.2011.04.008
  • Xiao J. 1997. Damage and fracture of brittle viscoelastic solids with application to ice load models[M].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.