411
Views
7
CrossRef citations to date
0
Altmetric
Articles

Modified wake oscillator model for vortex-induced motion prediction of low aspect ratio structures

ORCID Icon, , , , &
Pages 335-343 | Received 25 Oct 2018, Accepted 06 Mar 2019, Published online: 20 Mar 2019

References

  • Blevins R. 1990. Flow-induced vibration. New York: Van Nostrand Reinhold.
  • Cagney N, Balabani S. 2016. Fluid forces acting on a cylinder undergoing streamwise vortex-induced vibrations. J Fluids Struct. 62:147–155. doi: 10.1016/j.jfluidstructs.2016.01.007
  • Facchinetti ML, De Langre E, Biolley F. 2004. Coupling of structure and wake oscillators in vortex-induced vibrations. J Fluids Struct. 19:123–140. doi: 10.1016/j.jfluidstructs.2003.12.004
  • Farshidianfar A, Dolatabadi N. 2013. Modified higher-order wake oscillator model for vortex-induced vibration of circular cylinders. Acta Mech. 224(7):1441–1456. doi: 10.1007/s00707-013-0819-0
  • Farshidianfar A, Zanganeh H. 2010. A modified wake oscillator model for vortex-induced vibration of circular cylinders for a wide range of mass-damping ratio. J Fluids Struct. 26(3):430–441. doi: 10.1016/j.jfluidstructs.2009.11.005
  • Gao Y, Zou L, Zong Z, Takagi S, Kang Y. 2019. Numerical prediction of vortex-induced vibrations of a long flexible cylinder in uniform and linear shear flows using a wake oscillator model. Ocean Eng. 171:157–171. doi: 10.1016/j.oceaneng.2018.10.044
  • Gonçalves RT, Meneghini JR, Fujarra ALC. 2018. Vortex-induced vibration of floating circular cylinders with very low aspect ratio. Ocean Eng. 154:234–251. doi: 10.1016/j.oceaneng.2018.02.019
  • Gonçalves RT, Rosetti GF, Franzini GR, Meneghini JR, Fujarra ALC. 2013. Two-degree-of-freedom vortex-induced vibration of circular cylinders with very low aspect ratio and small mass ratio. J Fluids Struct. 39:237–257. doi: 10.1016/j.jfluidstructs.2013.02.004
  • Govardhan R, Williamson C. 2000. Modes of vortex formation and frequency response of a freely vibrating cylinder. J Fluid Mech. 420:85–130. doi: 10.1017/S0022112000001233
  • Hirabayashi S. 2016. Numerical analysis of vortex-induced motion of two-dimensional circular cylinder by lattice Boltzmann method. J Mar Sci Technol. 21(3):426–433. doi: 10.1007/s00773-015-0365-7
  • Hussin WNW, Harun FN, Mohd MH, Rahman MAA. 2017. Analytical modelling prediction by using wake oscillator model for vortex-induced vibrations. J Mech Eng Sci. 11(4):3116–3128. doi: 10.15282/jmes.11.4.2017.14.0280
  • Jin Y, Dong P. 2016. A novel wake oscillator model for simulation of cross-flow vortex induced vibrations of a circular cylinder close to a plane boundary. Ocean Eng. 117:57–62. doi: 10.1016/j.oceaneng.2016.03.057
  • Kang Z, Zhang C, Chang R. 2018. A higher-order nonlinear oscillator model for coupled cross-flow and in-line VIV of a circular cylinder. Ships Offsh Struct. 13(5):488–503. doi: 10.1080/17445302.2018.1426431
  • Khalak A, Williamson CHK. 1999. Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping. J Fluids Struct. 13(7–8):813–851. doi: 10.1006/jfls.1999.0236
  • Kurushina V, Pavlovskaia E, Postnikov A, Wiercigroch M. 2018. Calibration and comparison of VIV wake oscillator models for low mass ratio structures. Int J Mech Sci. 142–143:547–560. doi: 10.1016/j.ijmecsci.2018.04.027
  • Landl R. 1975. A mathematical model for vortex-excited vibrations of bluff bodies. J Sound Vib. 42(2):219–234. doi: 10.1016/0022-460X(75)90217-5
  • Low YM, Srinil N. 2016. VIV fatigue reliability analysis of marine risers with uncertainties in the wake oscillator model. Eng Struct. 106:96–108. doi: 10.1016/j.engstruct.2015.10.004
  • Morse TL, Govardhan RN, Williamson CHK. 2008. The effects of end conditions on the vortex-induced vibration of cylinders. J Fluids Struct. 24:1227–1239. doi: 10.1016/j.jfluidstructs.2008.06.004
  • Nayfeh AH. 1993. Introduction to perturbation techniques. New York: Wiley.
  • Postnikov A, Pavlovskaia E, Wiercigroch M. 2017. 2DOF CFD calibrated wake oscillator model to investigate vortex-induced vibrations. Int J Mech Sci. 127:176–190. doi: 10.1016/j.ijmecsci.2016.05.019
  • Rahman MAA, Leggoe J, Thiagarajan KP, Mohd MH, Paik JK. 2016. Numerical simulations of vortex-induced vibrations on vertical cylindrical structure with different aspect ratios. Ships Offsh Struct. 11(4):405–423. doi: 10.1080/17445302.2015.1013783
  • Rahman MAA, Thiagarajan KP. 2015. Experiments on vortex-induced vibration of a vertical cylindrical structure: effect of Low aspect ratio. Int J Automot Mech Eng. 11(1):2515–2530. doi: 10.15282/ijame.11.2015.31.0212
  • Sarpkaya T. 2004. A critical review of the intrinsic nature of vortex-induced vibrations. J Fluid Struct. 19:389–447. doi: 10.1016/j.jfluidstructs.2004.02.005
  • Srinil N, Zanganeh H. 2012. Modelling of coupled cross-flow/in-line vortex-induced vibrations using double duffing and van der Pol oscillators. Ocean Eng. 53:83–97. doi: 10.1016/j.oceaneng.2012.06.025
  • Stappenbelt B, O’Neill L. 2007. Vortex-induced vibration of cylindrical structures with low mass ratio. The Seventeenth International Offshore and Polar Engineering Conference. p. 2714–2721.
  • Sumer BM, Fredsoe J. 1997. Hydrodynamics around cylindrical structures. Singapore: World Scientific.
  • Thorsen MJ, Sævik S, Larsen CM. 2016. Time domain simulation of vortex-induced vibrations in stationary and oscillating flows. J Fluids Struct. 61:1–19. doi: 10.1016/j.jfluidstructs.2015.11.006
  • Triantafyllou MS, Hover FS, Yue DKP. 2003. Vortex-induced vibrations of slender structures in shear flow. Proceedings of the IUTAM Symposium on Coupled Fluid Structure Interaction Using Analysis, Computations and experiments; Rutgers, NJ, USA. p. 1–6.
  • Violette R, Langre DE, Szydlowski J. 2007. Computation of vortex-induced vibrations of long structures using a wake oscillator model: Comparison with DNS and experiments. Comput Struct. 85(11–14):1134–1141. doi: 10.1016/j.compstruc.2006.08.005
  • Xu J, Wang D, Huang H, Duan M, Gu J, An C. 2017. A vortex-induced vibration model for the fatigue analysis of a marine drilling riser. Ships Offsh Struct. 12(1):S280–S287. doi: 10.1080/17445302.2016.1271557
  • Xu K, Ge Y, Zhang D. 2015. Wake oscillator model for assessment of vortex-induced vibration of flexible structures under wind action. J Wind Eng Ind Aerod. 136:192–200. doi: 10.1016/j.jweia.2014.11.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.