12,166
Views
44
CrossRef citations to date
0
Altmetric
Articles

Ship energy performance study of three wind-assisted ship propulsion technologies including a parametric study of the Flettner rotor technology

& ORCID Icon
Pages 249-258 | Received 02 Feb 2019, Accepted 23 Apr 2019, Published online: 06 May 2019

References

  • Allenström B, Li DQ, Ran H. 2012. EffShip WP6 – system impact when using wind, wave and solar energy. Report No. RE40095426-01-00-A. SSPA Sweden AB, Gothenburg, Sweden.
  • Bentin M Z, Schlaak M D, Freye D, Elsner R, Kotzur S. 2016. A new routing optimization tool-influence of wind and waves on fuel consumption of ships with and without wind assisted ship propulsion systems. Transp Res Procedia. 14(1):153–162. doi: 10.1016/j.trpro.2016.05.051
  • Clauss GF, Siekmann H, Tampier BG. 2007. Simulation of the operation of wind-assisted cargo ships. Hauptversammlung der Schiffbautechnischen Gesellschaft, 21–23 November 2007, Berlin, Germany. p. 1–12.
  • Craft TJ, Iacovides H, Johnson N, Launder BE. 2012. Back to the future: Flettner-Thom rotors for maritime propulsion? In Proceedings of the 7th International Symposium on Turbulence, Heat and Mass Transfer (THMT12); Sep 24–27; Palermo, Italy. doi:10.1615/ICHMT.2012.ProcSevIntSympTurbHeatTransfPal.1150.
  • Dykstra Naval Architects. 2019. WASP (Ecoliner). Amsterdam (Netherlands): Dykstra Naval Architects; [accessed 2019 Feb 1]. http:// http://www.dykstra-na.nl/designs/wasp-ecoliner.
  • Hirdaris SE, Cheng YF. 2012. The role of technology in green ship design. In Proceedings of the 11th International Marine Design Conference (IMDC 2012); Jun 11–14; Glasgow (UK). doi:10.13140/RG.2.1.4242.0564.
  • International Maritime Organization (IMO). 2011. Amendments to the Annex of the protocol of 1997 to amend the International Convention for the Prevention of Pollution from Ships 1972 as modified in the protocol of 1978 relating thereto (Inclusion of regulations on energy efficiency for ships in MARPOL Annex VI). MEPC 62/24/Add.1, Annex 14; [accessed 2019 Feb 1]. http://www.imo.org.
  • International Maritime Organization (IMO). 2014. Third IMO GHG Study 2014; [accessed 2019 Feb 1]. http://www.imo.org.
  • International Maritime Organization (IMO). 2016. Marine Environment Protection Committee (MEPC), 70th session; October 24–28; [accessed 2019 Feb 1]; http://www.imo.org.
  • Karabelas SJ, Koumroglou BC, Argyropoulos CD, Markatos NC. 2012. High Reynolds number turbulent flow past a rotating cylinder. Appl Math Model. 36(1):379–398. doi:10.1016/j.apm.2011.07.032.
  • Mittal S, Kumar B. 2003. Flow past a rotating cylinder. J Fluid Mech. 476(476):303–334. doi:10.1017/S0022112002002938  doi: 10.1017/S0022112002002938
  • Nelissen D, Traut M, Köhler J, Mao W, Faber J, Ahdour S. 2016. Study on the analysis of market potentials and market barriers for wind propulsion technologies for ships. Publication code 16.7G92.114; CE Delft (Netherlands); [accessed 2019 Feb 1]. http://www.cedelft.eu.
  • Ouchi K, Uzawak K, Kanai A, Katori M. 2013. Wind challenger the next generation hybrid sailing vessel. In Proceedings of the Third International Symposium on Marine Propulsors (SMP’13); May 5–8; Launceston (Tasmania, Australia). p. 562–567.
  • Rosander M, Bloch O. 2000. Modern windships. Technical Report, Pelmatic Knud E. Hansen; [accessed 2019 Feb 1]. https://www2.mst.dk/udgiv/publications/2000/87-7944-019-3/pdf/87-7944-020-7.pdf.
  • Schlaak M, Kreutzer R, Elsner R. 2009. Simulating possible savings of the Skysails-system on international merchant ship fleets. Int J Marit Eng. 151(A4):25. doi:10.3940/rina.ijme.2009.a4.161.
  • Schmidt A. 2013. Enercon E-ship 1: a wind-hybrid commercial cargo ship. In Proceedings of the 4th Conference on Ship Efficiency; Sep 23–24; Hamburg (Germany).
  • SSPA. 2013. EffShip WP6: system impact when using wind, wave and solar energy; [accessed 2019 Feb 1]. http://www.effship.com.
  • Surplus DC. 2011. B9 ships: sail and virtual bio-methane powered coastal vessels. In Proceedings of the International Conference on Technologies, Operations, Logistics and Modelling for Low Carbon Shipping (LCS 2011); Jun 22–24; Glasgow (Scotland, UK).
  • Talluri L, Nalianda DK, Kyprianidis KG, Nikolaidis P, Pilidis T. 2016. Techno economic and environmental assessment of wind assisted marine propulsion systems. Ocean Eng. 121(1):301–311. doi:0.1016/j.oceaneng.2016.05.047 doi: 10.1016/j.oceaneng.2016.05.047
  • Tillig F, Ringsberg JW. 2019. A 4 DOF simulation model developed for fuel consumption prediction of ships at sea. Ships Offsh Struct. (Suppl 1). doi:10.1080/17445302.2018.1559912.
  • Tillig F, Ringsberg JW, Mao W, Ramne B. 2017. A generic energy systems model for efficient ship design and operation. IMechE, Part M. J Eng Marit Environ. 231(2):649–666. doi:10.1177/1475090216680672.
  • Tillig F, Ringsberg JW, Psaraftis HN, Zis T. 2019. ShipCLEAN – an integrated model for transport efficiency, economics and CO2 emissions in shipping. In Proceedings of the 2nd International Conference on Modelling and Optimization of Ship Energy Systems (MOSES 2019); May 8–10; Glasgow, Scotland (UK).
  • Traut M, Gilbert P, Walsh C, Bows A, Filippone A, Stansby P, Wood R. 2014. Propulsive power contribution of a kite and a Flettner rotor on selected shipping routes. Appl Energy. 113(1):362–372. doi:10.1016/j.apenergy.2013.07.026.
  • UNCTAD. 2013. Trade and Development Report 2013. United Nations Conference on Trade and Development, Review of Maritime Transport, United Nations: New York, 2014.
  • UNEP. 2014. The emissions gap report 2014. Nairobi (Kenya): United Nations Environment Programme (UNEP).
  • Van Hasselt R, Feenstra B. 2015. Sail into a sustainable future – factsheets hybrid shipping; [accessed 2019 Feb 1]; http://www.nsrsail.eu/wp-content/uploads/2015/06/Factsheet-Brochure_SAIL_2015.pdf.
  • Viola IM, Sacher M, Xu J, Wang F. 2015. A numerical method for the design of ships with wind-assisted propulsion. Ocean Eng. 105(1):33–42. doi:10.1016/j.oceaneng.2015.06.009.