177
Views
4
CrossRef citations to date
0
Altmetric
Articles

New formulation of reduction factors for pile groups under lateral loading through Model Tree technique

&
Pages 1120-1128 | Received 19 Jul 2019, Accepted 17 Dec 2019, Published online: 29 Dec 2019

References

  • AASHTO. 2012. AASHTO LRFD bridge design specifications, 6th ed. Washington (DC): American Association of State Highway and Transportation Officials (AASHTO).
  • API R. 2007. 2A-WSD 2007. Recommended practice for planning, designing and constructing fixed offshore platforms-working stress design. Washington (DC): American Petroleum Institute.
  • Avval YJ, Derakhshani A. 2018. New formulas for predicting liquefaction-induced lateral spreading: model tree approach. Bull Eng Geol Environ. 78(5):3649–3661. doi: 10.1007/s10064-018-1319-1
  • Bhattacharya B, Price RK, Solomatine DP. 2007. Machine learning approach to modeling sediment transport. J Hydraul Eng. 133(4):440–450. doi: 10.1061/(ASCE)0733-9429(2007)133:4(440)
  • Brown DA, Morrison C, Reese LC. 1988. Lateral load behavior of pile group in sand. J Geotechn Eng. 114(11):1261–1276. doi: 10.1061/(ASCE)0733-9410(1988)114:11(1261)
  • Brown DA, O'Neill M, Hoit M, McVay M, El Naggar M, Chakraborty S. 2001. Static and dynamic lateral loading of pile groups. Technical Report NCHRP Report No. 461. National Cooperative Highway Research Program, Washington, DC.
  • Brown DA, Reese LC, O'Neill MW. 1987. Cyclic lateral loading of a large-scale pile group. J Geotech Eng. 113(11):1326–1343. doi: 10.1061/(ASCE)0733-9410(1987)113:11(1326)
  • Chandrasekaran S, Boominathan A, Dodagoudar G. 2009. Group interaction effects on laterally loaded piles in clay. J Geotech Geoenviron Eng. 136(4):573–582. doi: 10.1061/(ASCE)GT.1943-5606.0000245
  • Christensen DS. 2006. Full scale static lateral load test of a 9 pile group in sand [master’s thesis]. Provo, UT: Brigham Young University.
  • Derakhshani A. 2017. Estimating uplift capacity of suction caissons in soft clay: a hybrid computational approach based on model tree and GP. Ocean Eng. 146(Supplement C):1–8. doi: 10.1016/j.oceaneng.2017.09.025
  • Derakhshani A. 2018. On the uncertainty analysis of uplift capacity of suction caissons in clay based on the fuzzy sets theory. Ocean Eng. 170:416–425. doi: 10.1016/j.oceaneng.2018.10.045
  • Derakhshani A, Foruzan AH. 2019. Predicting the principal strong ground motion parameters: A deep learning approach. Appl Soft Comput. 80:192–201. doi: 10.1016/j.asoc.2019.03.029
  • Etemad-Shahidi A, Bonakdar L. 2009. Design of rubble-mound breakwaters using M5′ machine learning method. Appl Ocean Res. 31(3):197–201. doi: 10.1016/j.apor.2009.08.003
  • Fayyazi MS, Taiebat M, Finn WL. 2014. Group reduction factors for analysis of laterally loaded pile groups. Can Geotech J. 51(7):758–769. doi: 10.1139/cgj-2013-0202
  • FEMA. 2012. Foundation analysis and design. FEMA P-751. In NEHRP recommended provisions: design examples. Washington (DC): Federal Emergency Management Agency. National Institute of Building Sciences, Building Seismic Safety Council.
  • Gurgen S, Altin I, Ozkok M. 2018. Prediction of main particulars of a chemical tanker at preliminary ship design using artificial neural network. Ships Offsh Struct. 13(5):459–465. doi: 10.1080/17445302.2018.1425337
  • Hannigan P, Goble G, Likins G, Rausche F. 2006. Design and construction of driven pile foundation, vol I. Washington (DC): Federal Highway Administration, U.S. Department of Transportation.
  • Huang A-B, Hsueh C-K, O'Neill MW, Chern S, Chen C. 2001. Effects of construction on laterally loaded pile groups. J Geotech Geoenviron Eng. 127(5):385–397. doi: 10.1061/(ASCE)1090-0241(2001)127:5(385)
  • Ilyas T, Leung C, Chow Y, Budi S. 2005. Closure to “centrifuge model study of laterally loaded pile groups in clay,” by T. Ilyas, CF Leung, YK Chow, and SS Budi. J Geotech Geoenviron Eng. 131(10):1308–1308. doi: 10.1061/(ASCE)1090-0241(2005)131:10(1308)
  • Jafariavval Y, Derakhshani A. 2019. New formulae for capacity energy-based assessment of liquefaction triggering. Mar Georesour Geotechnol. 1–9. DOI:10.1080/1064119X.2019.1566297.
  • Kambekar AR, Deo MC. 2010. Wave simulation and forecasting using wind time history and data-driven methods. Ships Offsh Struct. 5(3):253–266. doi: 10.1080/17445300903439223
  • Khorrami R, Derakhshani A. 2019. Estimation of ultimate bearing capacity of shallow foundations resting on cohesionless soils using a new hybrid M5'-GP model. Geomech Eng. 19(2):127–139.
  • Larkela A. 2008. Modeling of a pile group under static lateral loading. [master’s thesis]. Helsinki University of Technology.
  • Mahmoodi K, Ghassemi H, Nowruzi H, Shora MM. 2019. Prediction of the hydrodynamic performance and cavitation volume of the marine 0.propeller using gene expression programming. Ships Offsh Struct. 14(7):723–736. doi: 10.1080/17445302.2018.1557589
  • McVay M, Casper R, Shang T-I. 1995. Lateral response of three-row groups in loose to dense sands at 3D and 5D pile spacing. J Geotech Eng. 121(5):436–441. doi: 10.1061/(ASCE)0733-9410(1995)121:5(436)
  • McVay M, Zhang L, Molnit T, Lai P. 1998. Centrifuge testing of large laterally loaded pile groups in sands. J Geotech Geoenviron Eng. 124(10):1016–1026. doi: 10.1061/(ASCE)1090-0241(1998)124:10(1016)
  • Meimon Y, Baguelin F, Jezequel JF. 1986. Pile group behavior under long time lateral monotonic and cyclic loading. Proceedings of the Third International Conference, Numerical methods in offshore Piling; Nantes.
  • Mohammadzaheri M, Tafreshi R, Khan Z, Ghodsi M, Franchek M, Grigoriadis K. 2019. Modelling of petroleum multiphase flow in electrical submersible pumps with shallow artificial neural networks. Ships Offsh Struct. 1–10. DOI:10.1080/17445302.2019.1605959.
  • Morrison CS, Reese LC. 1988. A lateral-load test of a full-scale pile group in sand. DTIC Document.
  • Mostafa YE, Naggar MHE. 2002. Dynamic analysis of laterally loaded pile groups in sand and clay. Can Geotech J. 39(6):1358–1383. doi: 10.1139/t02-102
  • Pillai K, Etemad-Shahidi A, Lemckert C. 2019. Wave run-up on bermed coastal structures. Appl Ocean Res. 86:188–194. doi: 10.1016/j.apor.2019.02.006
  • Quinlan J. R. 1992. Learning with continuous classes. Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, Singapore. p. 343–348..
  • Raptodimos Y, Lazakis I. 2018. Using artificial neural network-self-organising map for data clustering of marine engine condition monitoring applications. Ships Offsh Struct. 13(6):649–656. doi: 10.1080/17445302.2018.1443694
  • Rollins KM, Lane JD, Gerber TM. 2005. Measured and computed lateral response of a pile group in sand. J Geotech Geoenviron Eng. 131(1):103–114. doi: 10.1061/(ASCE)1090-0241(2005)131:1(103)
  • Rollins KM, Olsen KG, Jensen DH, Garrett BH, Olsen RJ, Egbert JJ. 2006. Pile spacing effects on lateral pile group behavior: analysis. J Geotech Geoenviron Eng. 132(10):1272–1283. doi: 10.1061/(ASCE)1090-0241(2006)132:10(1272)
  • Rollins KM, Peterson KT, Weaver TJ. 1998. Lateral load behavior of full-scale pile group in clay. J Geotech Geoenviron Eng. 124(6):468–478. doi: 10.1061/(ASCE)1090-0241(1998)124:6(468)
  • Rollins KM, Sparks A. 2002. Lateral resistance of full-scale pile cap with gravel backfill. J Geotech Geoenviron Eng. 128(9):711–723. doi: 10.1061/(ASCE)1090-0241(2002)128:9(711)
  • Ruesta PF, Townsend FC. 1997. Evaluation of laterally loaded pile group at Roosevelt Bridge. J Geotech Geoenviron Eng. 123(12):1153–1161. doi: 10.1061/(ASCE)1090-0241(1997)123:12(1153)
  • Snyder JL. 2004. Full-scale lateral-load tests of a 3×5 pile group in soft clays and silts [master’s thesis]. Provo, UT: Brigham Young University.
  • Taghavi A, Muraleetharan KK. 2016. Analysis of laterally loaded pile groups in improved soft clay. Int J Geomech. 17(4):04016098. doi: 10.1061/(ASCE)GM.1943-5622.0000795
  • Talebi A, Derakhshani A. 2019. Estimation of P-multipliers for laterally loaded pile groups in clay and sand. Ships Offsh Struct. 14(3):229–237. doi: 10.1080/17445302.2018.1495542
  • Walsh JM. 2005. Full-scale lateral load test of a 3×5 pile group in sand [Master’s thesis]. Provo, UT: Brigham Young University.
  • Witten I., Wang Y. 1997. Induction of model trees for predicting continuous classes. In: van Someren, Widmer G., editors. Proceedings of the Poster Papers European Conference on Machine Learning. Berlin: Springer; p. 128–137.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.