289
Views
10
CrossRef citations to date
0
Altmetric
Articles

The use of computational fluid dynamic technique in ship control design

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 31-45 | Received 15 May 2019, Accepted 17 Dec 2019, Published online: 25 Dec 2019

References

  • Alessandri A, Donnarumma S, Luria G, Martelli M, Vignolo S, Chiti R, Sebastiani L. 2015. Dynamic positioning system of a vessel with conventional propulsion configuration: modeling and simulation. Maritime technology and engineering – proceedings of MARTECH 2014: 2nd international conference on maritime technology and engineering, p. 725–734.
  • Ankudinov V, Kaplan P, Jacobsen B. 1993. Assessment and principal structure of the modular mathematical model for ship maneuverability predictions and real-time maneuvering simulation. In: MARSIM ‘93, international conference on marine simulation and ship manoeuvrability, St. John’s, Canada, 26 September – 2 October 1993, p. 40–51.
  • Berger S, Druckenbrod M, Greve M, Abdel-Maksoud M, Greitsch L. 2011. An efficient method for the investigation of propeller hull interaction. In 14th Numerical Towing Tank Symposium – NUTTS 2011, Pool, UK.
  • Broglia R, Dubbioso G, Durante D, Di Mascio A. 2013. Simulation of turning circle by CFD: analysis of different propeller models and their effect on manoeuvring prediction. Appl Ocean Res. 39:1–10. doi: 10.1016/j.apor.2012.09.001
  • Bruzzone D, Ruscelli D, Villa D, Vivani M. 2015. Numerical prediction of hull force for low-velocity manoeuvring. In 18th International Conference on Ships and Shipping Research, NAV 2015, p. 284–295.
  • Capurro G, Cuomo G. 1994. Simulation program SIMSUP – theory and user manual (Version 3.0). Cetena Report n. 5264, February 1994, (Confidential).
  • Carrica PM, Ismail F, Hyman M, Bhushan S, Stern FT. 2013. Turn and zigzag maneuvers of a surface combatant using a URANS approach with dynamic overset grids. J Mar Sci Technol. 18(2):166–181. doi: 10.1007/s00773-012-0196-8
  • Chen J, Zou ZJ, Chen X, Xia L, Zou L. 2017. CFD-based simulation of the flow around a ship in turning motion at low speed. J Mar Sci Technol. 22(4):784–796. doi: 10.1007/s00773-017-0449-7
  • Da-Qing L. 2006. Validation of RANS predictions of open water performance of a highly skewed propeller with experiments. J Hydrodyn Ser B. 18(Suppl. 3):520–528. DOI:10.1016/s1001-6058(06)60106-6.
  • Donnarumma S, Figari M, Martelli M, Vignolo S, Viviani M. 2018. Design and validation of dynamic positioning for marine systems: a case study. IEEE J Oceanic Eng. 43(3):677–688. doi: 10.1109/JOE.2017.2732298
  • Donnarumma S, Martelli M, Vignolo S. 2015. Numerical models for ship dynamic positioning. MARINE 2015 – computational methods in marine engineering VI, p. 1078–1088.
  • Ferrando M, Gaggero S, Villa D. 2015. Open source computations of planing hull resistance. Int J Small Craft Technol. 157:83–98. DOI:10.3940/rina.ijsct.2015.b2.172. doi: 10.3940/rina.ijsct.2015.b2.172
  • Figari M, Martinelli L, Viviani M, Villa D, Enoizi L, Piaggio B. 2018. All round approach for the design of a new escort tug family. Proceedings of the ASME 2018 37th international conference on ocean, offshore and Arctic engineering OMAE2018, June 17–22, 2018, Madrid, Spain.
  • Gaggero S, Villa D, Viviani M. 2017. An extensive analysis of numerical ship self-propulsion prediction via a coupled BEM/RANS approach. Appl Ocean Res. 66:55–78. DOI:10.1016/j.apor.2017.05.005. doi: 10.1016/j.apor.2017.05.005
  • Geertsma RD, Negenborn RR, Visser K, Hopman JJ. 2017. Design and control of hybrid power and propulsion systems for smart ships: a review of developments. Appl Energy. 194:30–54. doi: 10.1016/j.apenergy.2017.02.060
  • He L, Kinnas SA. 2017. Numerical simulation of unsteady propeller/rudder interaction. Int J Nav Arch Ocean Eng. 9(6):677–692. DOI:10.1016/j.ijnaoe.2017.02.004. doi: 10.1016/j.ijnaoe.2017.02.004
  • Jiang T, Sharma SD. 1997. Dynamic stabilization of a tug-tanker tow by applying active control on the tug. Proc Ship Control Syst Symp. 2:257–274.
  • Johansen TA, Sorensen AJ. 2009. Experiences with HIL simulator testing of power management systems. Dynamic Positioning Conference, Marine Technology Society, Houston, US.
  • Martelli M. 2015. Marine propulsion simulation: methods and results. Berlin: De Gruyter Open, Collection: Engineering.
  • Martelli M, Figari M, Altosole M, Viviani M, Vignolo S. 2014. Numerical modelling of propulsion, control and ship motions in 6 degrees of freedom. Proc Inst Mech Eng M J Eng Maritime Environ. 228(4):373–397. DOI:10.1177/1475090214544181.
  • Oltmann P, Sharma SD. 1984. Simulation of Combined engine and rudder manoeuvres using an improved model of hull-propeller-rudder interactions. Proc. Of 15th Symposium Naval Hydrodynamics.
  • Schulten P, Stapersma D. 2007. A study of the validity of a complex simulation model. J Marine Eng Technol. 6(2):67–77. doi: 10.1080/20464177.2007.11020203
  • Van SH, Kim WJ, Kim DH, Yim GT, Lee CJ, Eom JY. 1997. Measurement of flows around a 3600TEU container ship model. Proceedings of the Annual Autumn Meeting, SNAK, Seoul, p. 300–304 (in Korean).
  • Villa D, Viviani M, Gaggero S, Vantorre M, Eloot K, Delefortrie G. 2018a. CFD-based analyses for a slow speed manoeuvrability model. J Mar Sci Technol. 1–13. DOI:10.1007/s00773-018-0593-8.
  • Villa D, Viviani M, Tani G, Gaggero S, Bruzzone D, Bonvino Podenzana C. 2018b. Numerical evaluation of rudder performance behind a propeller in bollard pull condition. J Mar Sci Appl. 17(2):153–164. DOI:10.1007/s11804-018-0018-4.
  • Vrijdag A, Stapersma D, Van Terwisga T. 2009. Systematic modelling, verification, calibration and validation of a ship propulsion simulation model. J Marine Eng Technol. 15:3–20. doi: 10.1080/20464177.2009.11020223
  • Yoshimura Y, Nakao I, Ishibashi A. 2009. Unified mathematical model for ocean and harbour manoeuvring. MARSIM-2009, p. 1–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.